Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T20:06:42.663Z Has data issue: false hasContentIssue false

Part I - Programs and Initiatives

Published online by Cambridge University Press:  21 December 2018

Allison B. Kaufman
Affiliation:
University of Connecticut
Meredith J. Bashaw
Affiliation:
Franklin and Marshall College, Pennsylvania
Terry L. Maple
Affiliation:
Jacksonville Zoo and Gardens
Get access
Type
Chapter
Information
Scientific Foundations of Zoos and Aquariums
Their Role in Conservation and Research
, pp. 43 - 188
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

ARCS (2016). 2016 Annual Report on Conservation and Science Highlights. Retrieved from www.aza.org/assets/2332/aza_arcshighlights_2016_final_web.pdfGoogle Scholar
AZA (2018). AZA Accreditation Standards. Retrieved from www.aza.org/assets/2332/guide_to_accreditation.pdfGoogle Scholar
Baker, A. (2007). Animal ambassadors: An analysis of the effectiveness and conservation impact of ex situ breeding efforts. In Zimmermann, A., Hatchwell, M., Dickie, L., & West, C. (Eds.), Zoos in the 21st Century: Catalysts for Conservation? (pp. 139154). Cambridge: Cambridge University Press.Google Scholar
Barongi, R., Fisken, F., Parker, M., & Gusset, M. (2015). Committing to Conservation: The World Zoo and Aquarium Conservation Strategy. Gland: WAZA Executive Office.Google Scholar
Beck, B., Walkup, K., Rodrigues, M., Unwin, S., Travis, D., & Stoinski, T. (2007). Best Practice Guidelines for the Re-Introduction of Great Apes. Gland: The World Conservation Union.Google Scholar
Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M., & Palmer, T. M. (2015). Accelerated modern human-induced species losses: Entering the sixth mass extinction. Science Advances, 1(5), e1400253.Google Scholar
Conde, D. A., Flesness, N., Colchero, F., Jones, O. R., & Scheuerlein, A. (2011). An emerging role of zoos to conserve biodiversity. Science, 331(6023), 13901391.Google Scholar
Conway, W., & Hutchins, M. (2001). Introduction. In Conway, W., Hutchins, M., Souza, M., Kapetanakos, Y., & Paul, E. (Eds.), American Zoo and Aquarium Association Field Conservation Research Guide (pp. 17). New York: Wildlife Conservation Society and Atlanta: Zoo Atlanta.Google Scholar
EAZA. (2017). Strategic Plan 2017–2020: Progressive Zoos and Aquariums Collaborating to Lead on Conservation. Amsterdam: European Association of Zoos and Aquariums.Google Scholar
Eves, H., & Hutchins, M. (2001). The bushmeat crisis task force: Cooperative US efforts to curb the illegal commercial bushmeat trade in Africa. In Conway, W., Hutchins, M., Souza, M., Kapetanakos, Y., & Paul, E. (Eds.), American Zoo and Aquarium Association Field Conservation Research Guide (pp. 181186). New York: Wildlife Conservation Society and Atlanta: Zoo Atlanta.Google Scholar
Finkelstein, M. E., Doak, D. F., George, D., Burnett, J., Brandt, J., Church, M., … Smith, D. R. (2012). Lead poisoning and the deceptive recovery of the critically endangered California condor. Proceedings of the National Academy of Sciences, 109(28), 1144911454.Google Scholar
Gilbert, T., Gardner, R., Kraaijeveld, A., & Riordan, P. (2017). Contributions of zoos and aquariums to reintroductions: Historical reintroduction efforts in the context of changing conservation perspectives. International Zoo Yearbook, 51(1), 1531.Google Scholar
Hutchins, M., & Conway, W. G. (1995). Beyond Noah’s ark: The evolving role of modern zoological parks and aquariums in field conservation. International Zoo Yearbook, 34(1), 117130.Google Scholar
IUCN/SSC (1993). Executive Summary, the World Zoo Conservation Strategy; the Role of the Zoos and Aquaria of the World in Global Conservation. Brookfield: IUCN Species Survival Commission.Google Scholar
Jarvis, C. (1965). Zoos and conservation symposium. International Zoo Yearbook, 5(1), 97100.Google Scholar
Keulartz, J. (2015). Captivity for conservation? Zoos at a crossroads. Journal of Agricultural and Environmental Ethics, 28(2), 335351.Google Scholar
Kleiman, D. G. (1989). Reintroduction of captive mammals for conservation. BioScience, 39(3), 152161.Google Scholar
Martin, T., Lurbiecki, H., Joy, J., & Mooers, A. (2014). Mammal and bird species held in zoos are less endemic and less threatened than their close relatives not held in zoos. Animal Conservation, 17(2), 8996.Google Scholar
McKenzie-Mohr, D. (2000). New ways to promote proenvironmental behavior: Promoting sustainable behavior: An introduction to community-based social marketing. Journal of Social Issues, 56(3), 543554.Google Scholar
Miller, B., Conway, W., Reading, R. P., Wemmer, C., Wildt, D., Kleiman, D., … Hutchins, M. (2004). Evaluating the conservation mission of zoos, aquariums, botanical gardens, and natural history museums. Conservation Biology, 18(1), 8693.Google Scholar
Norton, B. G., Hutchins, M., Stevens, E. F., & Maple, T. L. (1995). Ethics on the Ark: Zoos, Animal Welfare, and Wildlife Conservation. Washington, DC: Smithsonian Institute Press.Google Scholar
Pearson, E. L., Lowry, R., Dorrian, J., & Litchfield, C. A. (2014). Evaluating the conservation impact of an innovative zoo‐based educational campaign: ’Don’t Palm Us Off’ for orang‐utan conservation. Zoo Biology, 33(3), 184196.Google Scholar
Price, M. R. S., & Fa, J. E. (2007). Reintroductions from zoos: A conservation guiding light or a shooting star? In Zimmermann, A., Hatchwell, M., Dickie, L., & West, C. (Eds.), Zoos in the 21st Century: Catalysts for Conservation? (pp. 155177). Cambridge: Cambridge University Press.Google Scholar
Rabb, G. B. (1994). The changing roles of zoological parks in conserving biological diversity. American Zoologist, 34(1), 159164.Google Scholar
Rahbek, C. (1993). Captive breeding – A useful tool in the preservation of biodiversity? Biodiversity & Conservation, 2(4), 426437.CrossRefGoogle Scholar
Reading, R. P., & Kellert, S. R. (1993). Attitudes toward a proposed reintroduction of black-footed ferrets (Mustela nigripes). Conservation Biology, 7(3), 569580.Google Scholar
Robert, A., Colas, B., Guigon, I., Kerbiriou, C., Mihoub, J. B., Saint‐Jalme, M., & Sarrazin, F. (2015). Defining reintroduction success using IUCN criteria for threatened species: A demographic assessment. Animal Conservation, 18(5), 397406.Google Scholar
Schultz, P. W. (2011). Conservation means behavior. Conservation Biology, 25(6), 10801083.Google Scholar
Snyder, N. F., Derrickson, S. R., Beissinger, S. R., Wiley, J. W., Smith, T. B., Toone, W. D., & Miller, B. (1996). Limitations of captive breeding in endangered species recovery. Conservation Biology, 10(2), 338348.Google Scholar
Tribe, A., & Booth, R. (2003). Assessing the role of zoos in wildlife conservation. Human Dimensions of Wildlife, 8(1), 6574.Google Scholar
WAZA (2005). Building a Future for Wildlife – The World Zoo and Aquarium Conservation Strategy. Bern: World Association of Zoos and Aquariums.Google Scholar
Zimmermann, A., & Wilkinson, R. (2007). The conservation mission in the wild: Zoos as conservation NGOs? In Zimmermann, A., Hatchwell, M., Dickie, L., & West, C. (Eds.), Zoos in the 21st Century: Catalysts for Conservation? (pp. 303321). Cambridge: Cambridge University Press.Google Scholar

References

Abell, R., Allan, J. D., & Lehner, B. (2007). Unlocking the potential of protected areas for freshwaters. Biological Conservation, 134(1), 4863.Google Scholar
Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., … Stiassny, M. L. (2008). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58(5), 403414.Google Scholar
Adams, V. M., Setterfield, S. A., Douglas, M. M., Kennard, M. J., & Ferdinands, K. (2015). Measuring benefits of protected area management: Trends across realms and research gaps for freshwater systems. Philosophical Transactions of the Royal Society B Biological Sciences, 370(1681), 20140274.Google Scholar
Albon, S. D., Irvine, R. J., Halvorsen, O., Langvatn, R., Loe, L. E., Ropstad, E., … Hansen, B. B. (2017). Contrasting effects of summer and winter warming on body mass explain population dynamics in a food‐limited Arctic herbivore. Global Change Biology, 23(4), 13741389.Google Scholar
Brockington, D. (2002). Fortress Conservation: The Preservation of the Mkomazi Game Reserve, Tanzania. Bloomington, IN: Indiana University Press.Google Scholar
Camp, C. D., Wooten, J. A., Corbet, C. M., Dulka, E. A., Mitchem, J. A., & Krieger, T. J. (2013) Ecological interactions between two broadly sympatric, cryptic species of dusky salamander (genus Desmognathus). Copeia, 2013(3), 499506.Google Scholar
Caro, T. M., & O’Doherty, G. (1999). On the use of surrogate species in conservation biology. Conservation Biology, 13(4), 805814.Google Scholar
Caruso, N. M., Sears, M. W., Adams, D. C., & Lips, K. R. (2014). Widespread rapid reductions in body size of adult salamanders in response to climate change. Global Change Biology, 20(6), 17511759.Google Scholar
Cech, J. J., & Doroshov, S. I. (2004). Environmental requirements, preferences, and tolerance limits of North American sturgeons. In LeBreton, G. T. O., Beamish, F. W. H. & McKinley, R. S. (Eds.), Sturgeons and Paddlefish of North America (pp. 7386). Dordrecht: Springer.Google Scholar
Collen, B., Whitton, F., Dyer, E. E., Baillie, J. E., Cumberlidge, N., Darwall, W. R., … Böhm, M. (2014). Global patterns of freshwater species diversity, threat and endemism. Global Ecology and Biogeography, 23(1), 4051.Google Scholar
Cook, C. N., Mascia, M. B., Schwartz, M. W., Possingham, H. P., & Fuller, R. A. (2013). Achieving conservation science that bridges the knowledge–action boundary. Conservation Biology, 27(4), 669678.Google Scholar
Courtenay, W. R. Jr, Hensley, D. A., Taylor, J. N., & McCann, J. A. (1984). Distribution of exotic fishes in the continental United States. In Courtenay, W. R. & Stauffer, J. R. (Eds.), Distribution, Biology, and Management of Exotic Fishes (pp. 4177). Baltimore, MD: Johns Hopkins University Press.Google Scholar
Cvitanovic, C., Fulton, C. J., Wilson, S. K., van Kerkhoff, L., Cripps, I. L., & Muthiga, N. (2014). Utility of primary scientific literature to environmental managers: An international case study on coral-dominated marine protected areas. Ocean & Coastal Management, 102(A), 7278.Google Scholar
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., … Sullivan, C. A. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163182.Google Scholar
Elkins, D. C., Sweat, S. C., Hill, K. S., Kuhajda, B. R., George, A. L., & Wenger, S. J. (2016). The Southeastern Aquatic Biodiversity Conservation Strategy. Final Report. Athens, GA: University of Georgia River Basin Center.Google Scholar
Falk, J. H., Reinhard, E. M., Vernon, C., Bronnenkant, K., Heimlich, J. E., & Deans, N. L. (2007). Why Zoos & Aquariums Matter: Assessing the Impact of a Visit to a Zoo or Aquarium. Silver Spring, MD: Association of Zoos & Aquariums.Google Scholar
George, A. L., Kuhajda, B. R., Williams, J. D., Cantrell, M. A., Rakes, P. L., & Shute, J. R. (2009). Guidelines for propagation and translocation for freshwater fish conservation. Fisheries, 34(11), 529545.Google Scholar
George, A. L., Hamilton, M. T., & Alford, K. F. (2013). We all live downstream: Engaging partners and visitors in freshwater fish reintroduction programmes. International Zoo Yearbook, 47(1), 140150.CrossRefGoogle Scholar
George, A. L., Kuhajda, B. R., Neely, D. A., & Call, G. (2015). Laurel Dace Recovery Plan Draft Report. Atlanta, GA: Southeast Region, US Fish and Wildlife Service.Google Scholar
Gusset, M., & Dick, G. (2011). The global reach of zoos and aquariums in visitor numbers and conservation expenditures. Zoo Biology, 30(5), 566569.CrossRefGoogle ScholarPubMed
Hairston, N. G. (1987). Community Ecology and Salamander Guilds. Cambridge: Cambridge University Press.Google Scholar
Heimlich, J. E., Searles, V.C., & Atkins, A. (2013). Zoos and aquariums and their role in education for sustainability in schools. In McKeown, R. & Nolet, V. (Eds.), Schooling for Sustainable Development in Canada and the United States (pp. 199210). Dordrecht: Springer.Google Scholar
Hermoso, V., Linke, S., Prenda, J., & Possingham, H. P. (2011). Addressing longitudinal connectivity in the systematic conservation planning of fresh waters. Freshwater Biology, 56(1), 5770.CrossRefGoogle Scholar
Jelks, H. L., Walsh, S. J., Burkhead, N. M., Contreras-Balderas, S., Diaz-Pardo, E., Hendrickson, D. A., … Platania, S. P. (2008). Conservation status of imperiled North American freshwater and diadromous fishes. Fisheries, 33(8), 372407.Google Scholar
Jenkins, C. N., Van Houtan, K. S., Pimm, S. L., & Sexton, J. O. (2015). US protected lands mismatch biodiversity priorities. Proceedings of the National Academy of Sciences, 112(16), 50815086.Google Scholar
Knight, A. T., Cowling, R. M., Rouget, M., Balmford, A., Lombard, A. T., & Campbell, B. M. (2008). Knowing but not doing: Selecting priority conservation areas and the research–implementation gap. Conservation Biology, 22(3), 610617.Google Scholar
Liles, L. A., Cecala, K. K., Ennen, J. R., & Davenport, J. M. (2017). Elevated temperatures alter body condition and competitive outcomes in Appalachian salamanders. Animal Conservation, 20(6), 502510.Google Scholar
Master, L. (1990). The imperiled status of North American aquatic animals. Biodiversity Network News, 3(3), 12.Google Scholar
McLeod, C., Hildebrand, L., & Radford, D. (1999). A synopsis of lake sturgeon management in Alberta, Canada. Journal of Applied Ichthyology, 15(4–5), 173179.Google Scholar
McShane, T. O., Hirsch, P. D., Trung, T. C., Songorwa, A. N., Kinzig, A., Monteferri, B., … Welch-Devine, M. (2011). Hard choices: Making trade-offs between biodiversity conservation and human well-being. Biological Conservation, 144(3), 966972.Google Scholar
Moore, M. J., DiStefano, R. J., & Larson, E. R. (2013). An assessment of life-history studies for USA and Canadian crayfishes: Identifying biases and knowledge gaps to improve conservation and management. Freshwater Science, 32(4), 12761287.Google Scholar
Muir, M. J., & Schwartz, M. W. (2009). Academic research training for a nonacademic workplace: A case study of graduate student alumni who work in conservation. Conservation Biology, 23(6), 13571368.Google Scholar
Murphy, B. R., & Willis, D. W. (Eds.) (1996). Fisheries Techniques (2nd ed.). Bethesda, MD: American Fisheries Society.Google Scholar
Nico, L. G., & Fuller, P. L. (1999). Spatial and temporal patterns of nonindigenous fish introductions in the United States. Fisheries, 24(1), 1627.Google Scholar
Ohlberger, J. (2013). Climate warming and ecototherm body size: From individual physiology to community ecology. Functional Ecology, 27(4), 9911001.Google Scholar
Osmond, D. L., Nadkarni, N. M., Driscoll, C. T., Andrews, E., Gold, A. J., Allred, S. R. B., … Schwarz, K. (2010). The role of interface organizations in science communication and understanding. Frontiers in Ecology and the Environment, 8(6), 306313.Google Scholar
Patrick, P. G., Matthews, C. E., Ayers, D. F., & Tunnicliffe, S. D. (2007). Conservation and education: Prominent themes in zoo mission statements. The Journal of Environmental Education, 38(3), 5360.CrossRefGoogle Scholar
Pittock, J., Hansen, L. J., & Abell, R. (2008). Running dry: Freshwater biodiversity, protected areas and climate change. Biodiversity, 9(3–4), 3038.CrossRefGoogle Scholar
Pringle, C. M. (2001). Hydrologic connectivity and the management of biological reserves: A global perspective. Ecological Applications, 11(4), 981998.Google Scholar
Pritchard, P. C. H. (1989). The Alligator Snapping Turtle: Biology and Conservation. Milwaukee, WI: Milwaukee Public Museum.Google Scholar
Ream, J. T. (2008). Survival, Movement, and Habitat Selection of Introduced Juvenile Alligator Snapping Turtles (Macrochelys temminckii) in the Wolf River Drainage, Fayette County, Tennessee. (Unpublished master’s thesis). Austin Peay State University, Clarksville, TN.Google Scholar
Reed, R. N., Congdon, J., & Gibbons, J. W. (2002). The Alligator Snapping Turtle [Macrochelys (Macroclemys) temminckii]: A Review of Ecology, Life History, and Conservation, with Demographic Analyses of the Sustainability of Take from Wild Populations. Washington, DC: United States Fish and Wildlife Service.Google Scholar
Ricciardi, A., & Rasmussen, J. B. (1999). Extinction rates of North American freshwater fauna. Conservation Biology, 13(5), 12201222.CrossRefGoogle Scholar
Richter, B. D., Braun, D. P., Mendelson, M. A., & Master, L. L. (1997). Threats to imperiled freshwater fauna. Conservation Biology, 11(5), 10811093.Google Scholar
Saunders, D. L., Meeuwig, J. J., & Vincent, A. C. J. (2002). Freshwater protected areas: Strategies for conservation. Conservation Biology, 16(1), 3041.Google Scholar
Seddon, P. J., Armstrong, D. P., & Maloney, R. F. (2007). Developing the science of reintroduction biology. Conservation Biology, 21(2), 303312.CrossRefGoogle ScholarPubMed
Shute, J. R., Rakes, P. L., & Shute, P. W. (2005). Reintroduction of four imperiled fishes in Abrams Creek, Tennessee. Southeastern Naturalist, 4(1), 93110.Google Scholar
Silk, N., & Ciruna, K. (Eds.) (2013). A Practitioner’s Guide to Freshwater Biodiversity Conservation. Washington, DC: Island Press.Google Scholar
Skelton, C. E. (2001). New dace of the genus Phoxinus (Cyprinidae: Cypriniformes) from the Tennessee River drainage, Tennessee. Copeia, 2001(1), 118128.Google Scholar
Southeastern Lake Sturgeon Working Group (SLSWG) (2013). Lake Sturgeon Management Plan for the Tennessee and Cumberland Rivers. Warm Springs, GA: U.S. Fish and Wildlife Service.Google Scholar
Strayer, D. L., & Dudgeon, D. (2010). Freshwater biodiversity conservation: Recent progress and future challenges. Journal of the North American Benthological Society, 29(1), 344358.Google Scholar
Sutherland, W. J., Adams, W. M., Aronson, R. B., Aveling, R., Blackburn, T. M., Broad, S., … Dinerstein, E. (2009). One hundred questions of importance to the conservation of global biological diversity. Conservation Biology, 23(3), 557567.Google Scholar
Taylor, C. A., Schuster, G. A., Cooper, J. E., DiStefano, R. J., Eversole, A. G., Hamr, P., … Thoma, R. F. (2007). A reassessment of the conservation status of crayfishes of the United States and Canada after 10+ years of increased awareness. Fisheries, 32(8), 372389.Google Scholar
Tennessee State Wildlife Action Plan Team (TSWAPT) (2015). Tennessee State Wildlife Action Plan. Nashville, TN: Tennessee Wildlife Resources Agency.Google Scholar
Terando, A. J., Costanza, J., Belyea, C., Dunn, R. R., McKerrow, A., & Collazo, J. A. (2014). The southern megalopolis: Using the past to predict the future of urban sprawl in the southeast US. PLoS One, 9(7), e102261.Google Scholar
United States Fish and Wildlife Service (USFWS) (2005). Inclusion of alligator snapping turtle (Macroclemys [=Macrochelys] temminckii) and all species of map turtles (Graptemys spp.) in Appendix III to the Convention on International Trade in Endangered Species of Wild Fauna and Flora. Federal Register, 70(241), 7470074712.Google Scholar
United States Fish and Wildlife Service (USFWS) (2015). Endangered and threatened wildlife and plants: 90-day finding on 31 petitions. Federal Register, 80(126), 3756837579.Google Scholar
United States Fish and Wildlife Service (USFWS) (2018). Endangered and threatened wildlife and plants; endangered species status for Barrens topminnow. Federal Register, 83(3), 490498.Google Scholar
Ward, J. V., Tockner, K., Arscott, D. B., & Claret, C. (2002) Riverine landscape diversity. Freshwater Biology, 47(4), 517539.Google Scholar
Warren, M. L. Jr., Burr, B. M., Walsh, S. J., Bart, H. L. Jr., Cashner, R. C., Etnier, D. A., … Ross, S. T. (2000). Diversity, distribution, and conservation status of the native freshwater fishes of the southern United States. Fisheries, 25(10), 731.Google Scholar
Wells, M., & Bradon, K. (1992). People and Parks: Linking Protected Area Management with Local Communities. Washington, DC: World Bank.Google Scholar
Whitten, T., Holmes, D., & MacKinnon, K. (2001). Conservation biology: A displacement behavior for academia? Conservation Biology, 15(1), 13.CrossRefGoogle Scholar

References

Alberts, A. C. (2007). Behavioral considerations of headstarting as a conservation strategy for endangered Caribbean rock iguanas. Applied Animal Behaviour Science, 102, 380391.Google Scholar
Argeloo, M. (1994). The maleo Macrocephala maleo: New information on the distribution and status of Sulawesi’s endemic megapode. Bird Conservation International, 4, 383393.Google Scholar
Argeloo, M., & Dekker, R. W. R. J. (1996). Exploitation of megapode eggs in Indonesia: The role of traditional methods in the conservation of megapodes. Oryx, 30, 5964.Google Scholar
Barbour, M. S., & Litvaitis, J. A. (1993). Niche dimensions of New England cottontails in relation to habitat patch size. Oecologia, 95, 321327.Google Scholar
Bell, C., Parsons, J., Austin, T. J., Broderick, A. C., Ebanks-Petrie, G., & Godley, B. J. (2005). Some of them came home: The Cayman Turtle Farm headstarting project for the green turtle Chelonia mydas. Oryx, 39, 137148.Google Scholar
Bertolero, A., Oro, D., & Besnard, A. (2007). Assessing the efficacy of reintroduction programmes by modelling adult survival: The example of Hermann’s tortoise. Animal Conservation, 10, 360368.Google Scholar
Birdlife International (2000). Maleo. In Threatened Birds of the World (p. 124). Barcelona and Cambridge: Lynx Edicions and BirdLife International.Google Scholar
BirdLife International (2016). Macrocephalon maleo. The IUCN Red List of Threatened Species 2016. Retrieved from http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22678576A92779438.en.Google Scholar
Bowkett, A. (2008). Recent captive-breeding proposals and the return of the ark concept to global species conservation. Conservation Biology, 23, 773776.Google Scholar
Browne, R., Wolfram, K., Garcia, G., Bagaturov, M., & Pereboom, Z. (2011). Zoo-based amphibian research and conservation breeding programs. Amphibian and Reptile Conservation, 5, 110.Google Scholar
Butchart, S. M., & Baker, B. C. (2000). Priority sites for conservation of maleos (Macrocephalon maleo) in central Sulawesi. Biological Conservation, 94, 7991.Google Scholar
Champagnon, J., Elmberg, J., Guillemain, M., Gauthier-Clerc, M., & Lebreton, J. D. (2012). Conspecifics can be aliens too: A review of effects of restocking practices in vertebrates. Journal for Nature Conservation, 20, 231241.Google Scholar
Collins, S. A., Sanders, F. J., & Jodice, P. G. R. (2016). Assessing conservation tools for an at-risk shorebird: Feasibility of headstarting for American Oystercatchers Haematopus palliatus. Bird Conservation International, 26, 451465.Google Scholar
Conde, D. A., Flesness, N., Colchero, F., Jones, O. R., & Scheuerlein, A. (2011). An emerging role of zoos to conserve biodiversity. Science, 331, 13901391.Google Scholar
Cornejo, J., Iorizzo, M., & Clum, N. (2014). Artificial incubation of maleo Macrocephalon maleo eggs at the Bronx Zoo/Wildlife Conservation Society, New York. International Zoo Yearbook, 48, 3947.Google Scholar
Crane, L. A., & Mathis, A. (2011). Predator-recognition training: A conservation strategy to increase post release survival of hellbenders in head-starting programs. Zoo Biology, 30, 611622.Google Scholar
Crump, P., & Grow, S. (2007). Action plan for ex situ amphibian conservation in the AZA community. Retrieved from www.aza.org/amphibian-conservation.Google Scholar
Cunninghame, F., Switzer, R., Parks, B., Young, G., Carrión, A., Medranda, P., & Sevilla, C. (2015). Conserving the critically endangered mangrove finch: Head-starting to increase population size. In Galapagos Report 2013–2014. Puerto Ayora, Galapagos, Ecuador: GNPD, GCREG, CDF, and GC.Google Scholar
Dekker, R. W. (1988). Notes on ground temperatures at nesting sites of the maleo Macrocephalon maleo (Megapodiidae). Emu-Austral Ornithology, 88, 124127.Google Scholar
Dekker, R. W. (1990). The distribution and status of nesting grounds of the maleo Macrocephalon maleo in Sulawesi, Indonesia. Biological Conservation, 51, 139150.Google Scholar
Del Hoyo, J., Elliott, A., & Sargatal, J. (1994). Megapodiidae (Megapodes). In Handbook of the Birds of the World, Vol. 2. New World Vultures to Guineafowl. Barcelona: Lynx Edicions.Google Scholar
Foster, R. L., McMillian, A. M., & Roblee, K. J. (2009). Population status of hellbender salamanders (Cryptobranchus alleganiensis) in the Allegheny River drainage of New York. Journal of Herpetology, 43, 579588.Google Scholar
Gorog, A. J., Pamungkas, B., & Roberts, J. L. (2005). Nesting ground abandonment by the maleo (Macrocephalon maleo) in North Sulawesi: Identifying conservation priorities for Indonesia’s endemic megapode. Biological Conservation, 126, 548555.Google Scholar
Haskell, A., Graham, T. E., Griffin, C. R., & Hestbeck, J. B. (1996). Size related survival of headstarted redbelly turtles (Pseudemys rubriventris) in Massachusetts. Journal of Herpetology, 30, 524527.Google Scholar
Hunowu, I. (2017). Conservation of Sulawesi’s Mascot Bird – The Maleo. WCS Sulawesi Program Update. New York: Wildlife Conservation Society.Google Scholar
Indrawan, M., Wahid, N., Argeloo, M., Mile-Doucet, S., Tasirin, J., Koh, L. P., … McGowan, P. J. (2012). All politics is local: The case of Macrocephalon maleo conservation on Sulawesi, Indonesia. Biodiversity and Conservation, 21, 37353744.Google Scholar
Jones, D. N., Dekker, R. W., & Roselaar, S. C. (1995). Bird Families of the World: The Megapodes. Oxford: Oxford University Press.Google Scholar
King, R. B., & Stanford, K. M. (2006). Headstarting as a management tool: A case study of the plains garter snake. Herpetologica, 62, 282292.Google Scholar
Kingsbury, B. A., & Attum, O. (2009). Conservation strategies: Captive rearing, translocation, and repatriation. In Mullin, S. T. & Seigel, R. A. (Eds.), Snakes – Ecology and Conservation (pp. 201220). Ithaca, NY: Cornell University Press.Google Scholar
Lee, R., Didby, R. A., & Tomkovich, P. S. (2015). The spoon-billed sandpiper Calidris pygmaea head-starting programme in 2015. BirdingASIA, 24, 104107.Google Scholar
Levitis, D. A., & Martinez, D. E. (2013). The two halves of U-shaped mortality. Frontiers in Genetics, 4, 31.Google Scholar
Litvaitis, J. A., Tash, J. P., Litvaitis, M. K., Marchand, M. N., Kovach, A. I., & Innes, R. (2006). A range-wide survey to determine the current distribution of New England cottontails. Wildlife Society Bulletin, 34, 11901197.Google Scholar
MacKinnon, J. (1981). Methods for the conservation of maleo birds, Macrocephalon maleo on the island of Sulawesi Indonesia. Biological Conservation, 20, 183193.Google Scholar
Madsen, T., & Shine, R. (2000). Silver spoons and snake body sizes: Prey availability early in life influences long-term growth rates of free-ranging pythons. Journal of Animal Ecology, 69, 952958.Google Scholar
Mayasich, J., Grandmaison, D., & Philips, C. (2003). Eastern hellbender status assessment report. Retrieved from www.fws.gov/midwest/es/soc/amphibians/eahe-sa.pdf.Google Scholar
McMahon, T. A., Brannelly, L. A., Chatfield, M. W. H., Johnson, P. T. J., Joseph, M. B., McKenzie, V. J., … Rohr, J. R. (2013). B. dendrobatidis has non-amphibian hosts. Proceedings of the National Academy of Sciences, 110, 210215.Google Scholar
Mitrus, S. (2005). Headstarting in European pond turtles (Emys orbicularis): Does it work? Amphibia–Reptilia, 26, 333341.CrossRefGoogle Scholar
Morafka, D. J., Berry, K. H., & Spangenberg, K. (1997). Predator-proof field enclosures for enhancing hatching success and survivorship of juvenile tortoises: a critical evaluation. In Proceedings: Conservation, Restoration, and Management of Tortoises and Turtles – An International Conference. New York: New York Turtle and Tortoise Society.Google Scholar
Paputungan, U., Wungow, D. J., & Wahyudi, L. (1998). Hatchability of maleo birds (Macrocephalon maleo) under non-active and active nesting sites at Tangkoko Nature Reserve, North Sulawesi (Indonesia). Presented at 2nd International Conference on Eastern Indonesia–Australian Vertebrate Fauna, Mataram (Indonesia).Google Scholar
Perez-Buitrago, N., Garcia, M. A., Sabat, A., Delgado, J., Alvarez, A., McMillan, O., & Funk, S. M. (2008). Do headstart programs work? Survival and body condition in headstarted Mona Island iguanas Cyclura cornuta stejnegeri. Endangered Species Research, 6, 5565.Google Scholar
Pramuk, J., Titus, V. R., & Wagner, J. (2011). An effective method for transporting hellbenders (Cryptobranchus alleganiensis). Herpetological Review, 42, 532534.Google Scholar
Plummer, M. V., & Mills, N. E. (2000). Spatial ecology and survivorship of resident and translocated hognose snakes (Heterodon platirhinos). Journal of Herpetolology, 34, 5 65575.Google Scholar
Probert, B. P., & Litvaitis, J. A. (1996). Behavioral interactions between invading and endemic lagomorphs: Implications for conserving a declining species. Biological Conservation, 76, 289295.Google Scholar
Rittenhouse, C. D., Millspaugh, J. J., Hubbard, M. W., & Sheriff, S. L. (2007). Movements of translocated and resident three-toed box turtles. Journal of Herpetolology, 41, 115121.Google Scholar
Roe, J. H., Frank, M. R., Gibson, S. E., Attum, O., & Kingsbury, B. A. (2010). No place like home: An experimental comparison of reintroduction strategies using snakes. Journal of Applied Ecology, 47, 12531261.Google Scholar
Rusiyantono, Y., Tanari, M., & Mumu, M. I. (2011). Conservation of maleo bird (Macrocephalon maleo) through egg hatching modification and ex situ management. Biodiversitas, 12, 171176.Google Scholar
Sacerdote-Velat, A. B., Earnhardt, J. M., Mulkerin, D., Boehm, D., & Glowacki, G. (2014). Evaluation of headstarting and release techniques for population augmentation and reintroduction of the smooth green snake. Animal Conservation, 17, 6573.Google Scholar
Shaver, D. J., & Wibbels, T. (2007). Head-starting the Kemp’s ridley sea turtle. In Plotkin, P. T. (Ed.), Biology and Conservation of Ridley Sea Turtles (pp. 297324). Baltimore, MD: Johns Hopkins University Press.Google Scholar
Spear, S. F., Groves, J. D., Williams, L. A., & Waits, L. P. (2015). Using environmental DNA methods to improve detectability in hellbender (Crytobranchus alleganiensis). Biological Conservation, 183, 3845.Google Scholar
Starck, J. M., & Sutter, E. (2000). Patterns of growth and heterochrony in moundbuilders (Megapodiidae) and fowl (Phasianidae). Journal of Avian Biology, 31, 527547.Google Scholar
Tuberville, T. D., Clark, E. E., Buhlmann, K. A., & Gibbons, J. W. (2005). Translocation as a conservation tool: Site fidelity and movement of repatriated gopher tortoises (Gopherus polyphemus). Animal Conservation, 8, 349358.Google Scholar
Uno, A., Heinrich, G., & Menden, J. J. (1949). Het naturrmonument Panoea (N. Celebes) en het maleohoen (Macrocephalon maleo Sol. Müller) in het bijxonder. Tectona, 39, 151165.Google Scholar
Wheeler, B. A., Prosen, E., Mathis, A., & Wilkinson, R. F. (2002). Population declines of a long-lived salamander: A 20+ year study of hellbenders, Cryptobranchus alleganiensis. Biological Conservation, 109, 151156.Google Scholar
Wines, M. P., Johnson, V. M., Lock, B., Antonio, F., Godwin, J. C., Rush, E. M., & Guyer, C. (2015). Optimal husbandry of hatchling eastern indigo snakes (Drymarchon couperi) during a captive head-start program. Zoo Biology, 34, 230238.CrossRefGoogle ScholarPubMed

References

Aitken-Palmer, C., Hou, R., Wildt, D. E., Ottinger, M. A., Spindler, R. E., & Howard, J. G. (2007). Giant panda sperm tolerate cryopreservation at rapid freezing and thawing rates. Biology of Reproduction, 77(Suppl. 1), 107108.Google Scholar
Bartels, P., Friedmann, Y., Lubbe, K., Mortimer, D., Rasmussen, L. A., & Godke, R. A. (2001). The live birth of an eland (Taurotragus oryx) calf following estrous synchronization and artificial insemination using frozen thawed epididymal sperm. Theriogenology, 55(1), 381.Google Scholar
Benirschke, K. (1984). The frozen zoo concept. Zoo Biology, 3(4), 325328.Google Scholar
Blanco, J. M., Long, J. A., Gee, G. F., Wildt, D. E., & Donoghue, A. M. (2012). Comparative cryopreservation of avian spermatozoa: Effects of freezing and thawing rates on turkey and sandhill crane sperm cryosurvival. Animal Reproduction Science, 131(1), 18.Google Scholar
Böhm, M., Collen, B., Baillie, J. E. M., Bowles, P., Chanson, J., Cox, N., Hammerson, G., Hoffmann, M., Livingstone, S. R., & Ram, M. (2013). The conservation status of the world’s reptiles. Biological Conservation, 157, 372385.Google Scholar
Brodie, J. F. (2009). Is research effort allocated efficiently for conservation? Felidae as a global case study. Biodiversity and Conservation, 18(11), 29272939.Google Scholar
Brook, B. W., Sodhi, N. S., & Bradshaw, C. J. A. (2008). Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23(8), 453460.Google Scholar
Browne, R. K., Li, H., Robertson, H., Uteshev, V. K., Shishova, N. V., McGinnity, D., Nofs, S., Figiel, C. R., Mansour, N., & Lloyd, R. E. (2011). Reptile and amphibian conservation through gene banking and other reproduction technologies. Russian Journal of Herpatology, 18(3), 165174.Google Scholar
Caldeira, K., & Wickett, M. E. (2003). Oceanography: Anthropogenic carbon and ocean pH. Nature, 425(6956), 365365.Google Scholar
Carolsfeld, J., Godinho, H. P., Zaniboni Filho, E., & Harvey, B. J. (2003). Cryopreservation of sperm in Brazilian migratory fish conservation. Journal of Fish Biology, 63(2), 472489.Google Scholar
Cesar, H., Burke, L., & Pet-Soede, L. (2003). The Economics of Worldwide Coral Reef Degradation. Arnhem: Cesar Environmental Economics Consulting (CEEC).Google Scholar
Clark, J. A., & May, R. M. (2002). Taxonomic bias in conservation research. Science, 297(5579), 191192.Google Scholar
Cloete, S. W. P., Brand, T. S., Hoffman, L., Brand, Z., Engelbrecht, A., Bonato, M., Glatz, P. C., & Malecki, I. A. (2012). The development of ratite production through continued research. World’s Poultry Science Journal, 68, 323334.Google Scholar
Clulow, J., & Clulow, S. (2016). Cryopreservation and other assisted reproductive technologies for the conservation of threatened amphibians and reptiles: Bringing the ARTs up to speed. Reproduction, Fertility and Development, 28(8), 11161132.Google Scholar
CoA (1996a). Australia: State of the Environment 1996. Melbourne: CSIRO Publishing.Google Scholar
CoA (1996b). The National Strategy for the Conservation of Australia’s Biological Diversity. Canberra: Department of Environment, Sport and Territories.Google Scholar
Comizzoli, P. (2015). Biobanking efforts and new advances in male fertility preservation for rare and endangered species. Asian Journal of Andrology, 17(4), 640.Google Scholar
Comizzoli, P., & Holt, W. V. (2014). Recent advances and prospects in germplasm preservation of rare and endangered species. In Reproductive Sciences in Animal Conservation (pp. 331356). New York: Springer.Google Scholar
Comizzoli, P., Songsasen, N., Hagedorn, M., & Wildt, D. E. (2012). Comparative cryobiological traits and requirements for gametes and gonadal tissues collected from wildlife species. Theriogenology, 78(8), 16661681.Google Scholar
Cooney, R. (2004). The Precautionary Principle in Biodiversity Conservation and Natural Resource Management: An Issues Paper for Policy-Makers, Researchers and Practitioners. Gland: IUCN.Google Scholar
Critser, J. K., & Russell, R. J. (2000). Genome resource banking of laboratory animal models. ILAR Journal, 41(4), 183186.Google Scholar
Doody, J. S., Green, B., Rhind, D., Castellano, C. M., Sims, R., & Robinson, T. (2009). Population‐level declines in Australian predators caused by an invasive species. Animal Conservation, 12(1), 4653.Google Scholar
Dos Remedios, C. (2006). The Value of Fundamental Research. Sydney: University of Sydney.Google Scholar
Fahrig, B. M., Mitchell, M. A., Eilts, B. E., & Paccamonti, D. L. (2007). Characterization and cooled storage of semen from corn snakes (Elaphe guttata). Journal of Zoo and Wildlife Medicine, 38(1), 712.Google Scholar
Fickel, J., Wagener, A., & Ludwig, A. (2007). Semen cryopreservation and the conservation of endangered species. European Journal of Wildlife Research, 53(2), 8189.Google Scholar
Fine, M., & Tchernov, D. (2007). Scleractinian coral species survive and recover from decalcification. Science, 315(5820), 18111811.Google Scholar
Friedrich Ben-Nun, I., Montague, S., Houck, M., Tran, H., Garitaonandia, I., Leonardo, T., Wang, Y.-C., Charter, S., Laurent, L., Ryder, O., & Loring, J. (2011). Induced pluripotent stem cells from highly endangered species. Nature Methods, 8(10), 829831.Google Scholar
GBRMPA (2009). Great Barrier Reef Outlook Report 2009. Townsville: Great Barrier Reef Marine Park Authority.Google Scholar
González, F., Boué, S., & Belmonte, J. C. I. (2011). Methods for making induced pluripotent stem cells: Reprogramming à la carte. Nature Reviews Genetics, 12(4), 231242.Google Scholar
Hagedorn, M., Carter, V. L., Henley, E. M., van Oppen, M. J. H., Hobbs, R., & Spindler, R. E., (2017). Producing coral offspring with cryopreserved sperm: A tool for coral reef restoration. Scientific Reports, 7, 14432. doi: 10.1038/s41598-017-14644-x.Google Scholar
Hagedorn, M., Carter, V., Martorana, K., Paresa, M. K., Acker, J., Baums, I. B., Borneman, E., Brittsan, M., Byers, M., & Henley, M. (2012). Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral. PLoS One, 7(3), e33354.Google Scholar
Hagedorn, M., & Spindler, R. E. (2014). The reality, use and potential for cryopreservation of coral reefs. In Reproductive Sciences in Animal Conservation (pp. 317329). New York: Springer.Google Scholar
Hagedorn, M., van Oppen, M. J. H., Carter, V., Henley, M., Abrego, D., Puill-Stephan, E., Negri, A., Heyward, A., MacFarlane, D., & Spindler, R. E. (2012). First frozen repository for the Great Barrier Reef coral created. Cryobiology, 65(2), 157158.Google Scholar
Hawkins, C. E., Baars, C., Hesterman, H., Hocking, G. J., Jones, M. E., Lazenby, B., Mann, D., Mooney, N., Pemberton, D., & Pyecroft, S. (2006). Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biological Conservation, 131(2), 307324.Google Scholar
Heise, A. (2012). Artificial Insemination in Veterinary Science. London: INTECH Open Access Publisher.Google Scholar
Hermes, R., Göritz, F., Saragusty, J., Sós, E., Molnar, V., Reid, C. E., Schwarzenberger, F., & Hildebrandt, T. B. (2009). First successful artificial insemination with frozen–thawed semen in rhinoceros. Theriogenology, 71(3), 393399.Google Scholar
Hermes, R., Saragusty, J., Göritz, F., Bartels, P., Potier, R., Baker, B., Streich, W. J., & Hildebrandt, T. B. (2013). Freezing African elephant semen as a new population management tool. PLoS One, 8(3), e57616.Google Scholar
Herrick, J. R., Bartels, P., & Krisher, R. L. (2004). Postthaw evaluation of in vitro function of epididymal spermatozoa from four species of free-ranging African bovids. Biology of Reproduction, 71(3), 948958.Google Scholar
Hollings, T., Jones, M. E., Mooney, N., & McCallum, H. (2014). Trophic cascades following the disease‐induced decline of an apex predator, the Tasmanian devil. Conservation Biology, 28(1), 6375.CrossRefGoogle ScholarPubMed
Holt, W. V., Abaigar, T., Watson, P. F., & Wildt, D. E. (2003). Genetic resource banks for species conservation. In Holt, W. V., Pickard, A. R., Roger, J. C., & Wildt, D. E. (Eds.), Reproductive Science and Integrated Conservation (pp. 267280). Cambridge, UK: Cambridge University Press.Google Scholar
Holt, W. V., & Lloyd, R. E. (2010). Sperm storage in the vertebrate female reproductive tract: How does it work so well? Theriogenology, 73(6), 713722.Google Scholar
Hopkins, B. (2014). Artifical Reproductive Techniques in Honey Bees: Sperm Cell Physiology, Semen Collection and Storage (PhD thesis). Pullman, WA: Washington State University.Google Scholar
Howard, J. G., Huang, Y., Wang, P. Y., DeSheng, L., Zhang, G., Hou, R., Zhang, Z., Durrant, B. S., Spindler, R. E., Zhang, H., & Zhang, A. (2006). Role and efficiency of artificial insemination and genome resource banking. In Giant Pandas: Biology, Veterinary Medicine and Management (pp. 469494). Cambridge, UK: Cambridge University Press.Google Scholar
Howard, J. G., Lynch, C., Santymire, R. M., Marinari, P. E., & Wildt, D. E. (2016). Recovery of gene diversity using long‐term cryopreserved spermatozoa and artificial insemination in the endangered black‐footed ferret. Animal Conservation, 19(2), 102111.Google Scholar
Huang, Y., Li, D., Zhou, Y., Zhou, Q., Li, R., Wang, C., Huang, Z., Hull, V. & Zhang, H. (2012). Factors affecting the outcome of artificial insemination using cryopreserved spermatozoa in the giant panda (Ailuropoda melanoleuca). Zoo Biology, 31(5), 561573.Google Scholar
Huang, Y., Wang, P., Zhang, G., Zhang, H., Li, D., Du, J., Wei, R. P., Tang, C., Spindler, R. E., & Wildt, D. E. (2002). Use of artificial insemination to enhance propagation of giant pandas at the Wolong Breeding Center. Paper presented at the Proceedings of the 2nd International Symposium on Assisted Reproductive Technology (ART) for the Conservation and Genetic Management of Wildlife.Google Scholar
Johnston, S. D., Lever, J., McLeod, R., Oishi, M., & Collins, S. (2014). Development of Breeding Techniques in the Crocodile Industry (Publication No. 13/097. Project No. PRJ-006157). Canberra: Rural Industries Research and Development Corporation.Google Scholar
Johnston, S. D., Lever, J., McLeod, R., Oishi, M., Qualischefski, E., Omanga, C., Leitner, M., Price, R., Barker, L. & Kamau, K. (2014). Semen collection and seminal characteristics of the Australian saltwater crocodile (Crocodylus porosus). Aquaculture, 422, 2535.Google Scholar
Johnston, S. D., Lever, J., McLeod, R., Qualischefski, E., Brabazon, S., Walton, S., & Collins, S. N. (2014). Extension, osmotic tolerance and cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa. Aquaculture, 426, 213221.Google Scholar
Johnston, S. D., López-Fernández, C., Arroyo, F., Fernández, J. L., & Gosálvez, J. (2017). The assessment of sperm DNA fragmentation in the saltwater crocodile (Crocodylus porosus). Reproduction, Fertility and Development, 29, 630636.Google Scholar
Johnston, S. D., Qualischefski, E., Cooper, J., McLeod, R., Lever, J., Nixon, B., Anderson, A. L., Hobbs, R., Gosálvez, J., & López-Fernández, C. (2017). Cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa. Reproduction, Fertility and Development, 29, 22352244.Google Scholar
Keeley, T., McGreevy, P. D., & O’Brien, J. K. (2012). Cryopreservation of epididymal sperm collected postmortem in the Tasmanian devil (Sarcophilus harrisii). Theriogenology, 78(2), 315325.Google Scholar
Kochin, B. F., & Levin, P. S. (2003). Lack of concern deepens the oceans’ problems. Nature, 424(6950), 723723.Google Scholar
Kusunoki, H., Daimaru, H., Minami, S., Nishimoto, S., Yamane, K.-I., & Fukumoto, Y. (2001). Birth of a chimpanzee (Pan troglodytes) after artificial insemination with cryopreserved epididymal spermatozoa collected postmortem. Zoo Biology, 20(3), 135143.Google Scholar
Letnic, M., Webb, J. K., & Shine, R. (2008). Invasive cane toads (Bufo marinus) cause mass mortality of freshwater crocodiles (Crocodylus johnstoni) in tropical Australia. Biological Conservation, 141(7), 17731782.Google Scholar
Licht, P. (1972). Environmental physiology of reptilian breeding cycles: Role of temperature. General and Comparative Endocrinology, 3, 477488.Google Scholar
Maiteny, P. (2000). The psychodynamics of meaning and action for a sustainable future. Futures, 32(3), 339360.Google Scholar
Mastromonaco, G. F., González-Grajales, L. A., Filice, M., & Comizzoli, P. (2014). Somatic cells, stem cells, and induced pluripotent stem cells: How do they now contribute to conservation? In Reproductive Sciences in Animal Conservation (pp. 385427). New York: Springer.Google Scholar
McCallum, H. (2008). Tasmanian devil facial tumour disease: Lessons for conservation biology. Trends in Ecology & Evolution, 23(11), 631637.Google Scholar
Merilan, C. P., Read, B. W., & Boever, W. J. (1982). Semen collection procedures for captive wild animals. International Zoo Yearbook, 22(1), 241244.Google Scholar
Moberg, F., & Folke, C. (1999). Ecological goods and services of coral reef ecosystems. Ecological Economics, 29(2), 215233.Google Scholar
Molinia, F. C., Bell, T., Norbury, G., Cree, A., & Gleeson, D. M. (2010). Assisted breeding of skinks or how to teach a lizard old tricks. Herpetological Conservation and Biology, 5, 311319.Google Scholar
Monfort, S. L. (2014). “Mayday Mayday Mayday,” the millennium ark is sinking! In Reproductive Sciences in Animal Conservation (pp. 1531). New York: Springer.Google Scholar
Morato, G., Wildt, D. E., & Spindler, R. E. (2003). Effects of short-term storage of jaguar sperm prior to cryopreservation. Theriogenology, 59.Google Scholar
Morowitz, H. J. (1991). Balancing species preservation and economic considerations. Science, 253(5021), 752755.Google Scholar
Morrell, J. M., Küderling, I., & Hodges, J. K. (1996). Influence of semen collection method on ejaculate characteristics in the common marmoset, Callithrix jacchus. Journal of Andrology, 17(2), 164172.Google Scholar
Morrell, J. M., Nowshari, M., Rosenbusch, J., Nayudu, P. L., & Hodges, J. K. (1997). Birth of offspring following artificial insemination in the common marmoset, Callithrix jacchus. American Journal of Primatology, 41(1), 37.Google Scholar
Nixon, B., Anderson, A. L., Smith, N. D., McLeod, R., & Johnston, S. D. (2016). The Australian saltwater crocodile (Crocodylus porosus) provides evidence that the capacitation of spermatozoa may extend beyond the mammalian lineage. Paper presented at the Proceedings of the Royal Society B.Google Scholar
O’Brien, J. K., Oehler, D. A., Malowski, S. P., & Roth, T. L. (1999). Semen collection, characterization, and cryopreservation in a Magellanic penguin (Spheniscus magellanicus). Zoo Biology, 18(3), 199214.3.0.CO;2-#>CrossRefGoogle Scholar
O’Brien, J. K., & Roth, T. L. (2000). Post-coital sperm recovery and cryopreservation in the Sumatran rhinoceros (Dicerorhinus sumatrensis) and application to gamete rescue in the African black rhinoceros (Diceros bicornis). Journal of Reproduction and Fertility, 118(2), 263271.Google Scholar
O’Brien, J. K., Steinman, K. J., Montano, G. A., Dubach, J. M., & Robeck, T. R. (2016). Chicks produced in the Magellanic penguin (Spheniscus magellanicus) after cloacal insemination of frozen-thawed semen. Zoo Biology, 35(4), 326338.Google Scholar
O’Brien, J. K., Steinman, K. J., Schmitt, T., & Robeck, T. R. (2008). Semen collection, characterisation and artificial insemination in the beluga (Delphinapterus leucas) using liquid-stored spermatozoa. Reproduction, Fertility and Development, 20(7), 770783.Google Scholar
Ombelet, W., & Van Robays, J. (2015). Artificial insemination history: Hurdles and milestones. Facts, Views & Vision Issues in Obsetrics, Gynaecology and Reproductive Health, 7(2), 137143.Google Scholar
Powney, G. D., Grenyer, R., Orme, C. D. L., Owens, I. P. F., & Meiri, S. (2010). Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Global Ecology and Biogeography, 19(3), 386396.Google Scholar
Pukazhenthi, B. S., & Wildt, D. E. (2004). Which reproductive technologies are most relevant to studying, managing and conserving wildlife? Reproduction, Fertility, and Development, 16(1–2), 33.Google Scholar
Pyecroft, S. B., Pearse, A.-M., Loh, R., Swift, K., Belov, K., Fox, N., Noonan, E., Hayes, D., Hyatt, A. & Wang, L. (2007). Towards a case definition for devil facial tumour disease: What is it? EcoHealth, 4(3), 346.Google Scholar
Quinn, H., Blasedel, T., & Platz, C. C. (1989). Successful artificial insemination in the checkered garter snake Thamnophis marcianus. International Zoo Yearbook, 28(1), 177183.Google Scholar
Reed, D. H., & Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology, 17(1), 230237.Google Scholar
Rickards, P. A., & Nicol, D. C. (2012). What Australia offers as a source of world leading genetics and genetic technologies. Paper presented at International Beef Cattle Genetics Conference, 19.Google Scholar
Riegl, B., Bruckner, A., Coles, S. L., Renaud, P., & Dodge, R. E. (2009). Coral reefs. Annals of the New York Academy of Sciences, 1162(1), 136186.Google Scholar
Robeck, T. R., Montano, G. A., Steinman, K. J., Smolensky, P., Sweeney, J., Osborn, S., & O’Brien, J. K. (2013). Development and evaluation of deep intra-uterine artificial insemination using cryopreserved sexed spermatozoa in bottlenose dolphins (Tursiops truncatus). Animal Reproduction Science, 139(1–4), 168.Google Scholar
Robeck, T. R., Steinman, K., Gearhart, S., Reidarson, T., McBain, J., & Monfort, S. (2004). Reproductive physiology and development of artificial insemination technology in killer whales (Orcinus Orca). Biology of Reproduction, 71(2), 650660.Google Scholar
Rosauer, D. F., Blom, M. P. K., Bourke, G., Catalano, S., Donnellan, S., Gillespie, G., Mulder, E., Oliver, P. M., Potter, S., & Pratt, R. C. (2016). Phylogeography, hotspots and conservation priorities: An example from the Top End of Australia. Biological Conservation, 204, 8393.Google Scholar
Roth, T. L., Bush, L. M., Wildt, D. E., & Weiss, R. B. (1999). Scimitar-horned oryx (Oryx dammah) spermatozoa are functionally competent in a heterologous bovine in vitro fertilization system after cryopreservation on dry ice, in a dry shipper, or over liquid nitrogen vapor. Biology of Reproduction, 60(2), 493498.Google Scholar
Roth, T. L., Stoops, M. A., Robeck, T. R., & O’ Brien, S. J. (2016). Factors impacting the success of post-mortem sperm rescue in the rhinoceros. Animal Reproduction Science, 167, 2230.Google Scholar
Russell, W. C., Thorne, E. T., Oakleaf, R., & Ballou, J. D. (1994). The genetic basis of black‐footed ferret reintroduction. Conservation Biology, 8(1), 263266.Google Scholar
Ryder, O. A., McLaren, A., Brenner, S., Zhang, Y.-P., & Benirschke, K. (2000). DNA banks for endangered animal species. Science, 288(5464), 275277.Google Scholar
Samour, J. H. (2004). Semen collection, spermatozoa cryopreservation, and artificial insemination in nondomestic birds. Journal of Avian Medicine and Surgery, 18(4), 219223.Google Scholar
Santiago-Moreno, J., Toledano-Díaz, A., Pulido-Pastor, A., Gómez-Brunet, A., & López-Sebastián, A. (2006). Birth of live Spanish ibex (Capra pyrenaica hispanica) derived from artificial insemination with epididymal spermatozoa retrieved after death. Theriogenology, 66(2), 283291.Google Scholar
Santymire, R. (2016). Implementing the use of a biobank in the endangered black-footed ferret (Mustela nigripes). Reproduction, Fertility and Development. Epub ahead of print. doi: 10.1071/RD15461.Google Scholar
Saragusty, J., & Arav, A. (2011). Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction, 141(1), 119.Google Scholar
Schaffer, N., Cranfield, M., Meehan, T., & Kempske, S. (1989). Semen collection and analysis in the conservation of endangered nonhuman primates. Zoo Biology, 8(S1), 4760.Google Scholar
Schmitt, D. L., & Hildebrandt, T. B. (1998). Manual collection and characterization of semen from Asian elephants (Elephas maximus). Animal Reproduction Science, 53(1), 309314.Google Scholar
Secher, J. O., Liu, Y., Petkov, S., Luo, Y., Li, D., Hall, V. J., Schmidt, M., Callesen, H., Bentzon, J. F., Sørensen, C. B., Freude, K. K., & Hyttel, P. (2017). Evaluation of porcine stem cell competence for somatic cell nuclear transfer and production of cloned animals. Animal Reproduction Science, 178, 4049.Google Scholar
Shearer, T. L., Porto, I., & Zubillaga, A. L. (2009). Restoration of coral populations in light of genetic diversity estimates. Coral Reefs, 28(3), 727733.Google Scholar
Shine, R., & Wiens, J. J. (2010). The ecological impact of invasive cane toads (Bufo marinus) in Australia. The Quarterly Review of Biology, 85(3), 253291.Google Scholar
Siddle, H. V., Kreiss, A., Eldridge, M. D. B., Noonan, E., Clarke, C. J., Pyecroft, S., Woods, G. M., & Belov, K. (2007). Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proceedings of the National Academy of Sciences, 104(41), 1622116226.Google Scholar
Silva, K. B., Zogno, M. A., Camillo, A. B., Pereira, R. J. G., & Almeida-Santos, S. M. (2015). Annual changes in seminal variables of golden lanchead pitvipers (Bothrops insularis) maintained in captivity. Animal Reproduction Science, 163, 144150.Google Scholar
Small, E. (2011). The new Noah’s Ark: Beautiful and useful species only. Part 1. Biodiversity conservation issues and priorities. Biodiversity, 12(4), 232247.Google Scholar
Smith, J. G., & Phillips, B. L. (2006). Toxic tucker: The potential impact of cane toads on Australian reptiles. Pacific Conservation Biology, 12(1), 4049.Google Scholar
Soler, A. J., García, A. J., Fernández‐Santos, M. R., Esteso, M. C., & Garde, J. J. (2003). Effects of thawing procedure on postthawed in vitro viability and in vivo fertility of red deer epididymal spermatozoa cryopreserved at −196°C. Journal of Andrology, 24(5), 746756.Google Scholar
Stanley, G. D., & Fautin, D. G. (2001). The origins of modern corals. Science, 291(5510), 19131914.Google Scholar
Steffen, W., Crutzen, P. J., & McNeill, J. R. (2007). The Anthropocene: Are humans now overwhelming the great forces of nature? AMBIO: A Journal of the Human Environment, 36(8), 614621.Google Scholar
Stoops, M. A., Bond, J. B., Bateman, H. L., Campbell, M. K., Levens, G. P., Bowsher, T. R., Ferrell, S. T., & Swanson, W. F. (2007). Comparison of different sperm cryopreservation procedures on post-thaw quality and heterologous in vitro fertilisation success in the ocelot (Leopardus pardalis). Reproduction, Fertility and Development, 19(5), 685694.Google Scholar
Stoops, M. A., Campbell, M. K., DeChant, C. J., Hauser, J., Kottwitz, J., Pairan, R. D., Pairan, R. D., Shaffstall, W., Volle, K., & Roth, T. L. (2016). Enhancing captive Indian rhinoceros genetics via artificial insemination of cryopreserved sperm. Animal Reproduction Science, 172, 6075.Google Scholar
Stoops, M. A., O’Brien, J. K., & Roth, T. L. (2011). Gamete rescue in the African black rhinoceros (Diceros bicornis). Theriogenology, 76(7), 12581265.Google Scholar
Stott, C. (2015). Virtus Health and Monash IVF are making money from making babies, Australian Financial Review. Retrieved from www.afr.com/personal-finance/virtus-health-and-monash-ivf-are-making-money-from-making-babies-20151108-gktz4i#ixzz4gATOJ7dFGoogle Scholar
Stroud, J. T., Rehm, E., Ladd, M., Olivas, P., & Feeley, K. J. (2014). Is conservation research money being spent wisely? Changing trends in conservation research priorities. Journal for Nature Conservation, 22(5), 471473.Google Scholar
Swanson, W. F. (2012). Laparoscopic oviductal embryo transfer and artificial insemination in felids – Challenges, strategies and successes. Reproduction in Domestic Animals, 47(Suppl. 6), 136140.Google Scholar
Swanson, W. F., Stoops, M. A., Magarey, G. M., & Herrick, J. R. (2007). Sperm cryopreservation in endangered felids: Developing linkage of in situ–ex situ populations. Society of Reproduction and Fertility supplement, 65, 417.Google Scholar
Tilman, D., May, R. M., Lehman, C. L., & Nowak, M. A. (1994). Habitat destruction and the extinction debt. Nature, 371(6492), 6566.Google Scholar
Ujvari, B., & Madsen, T. (2009). Increased mortality of naive varanid lizards after the invasion of non-native can toads (Bufo marinus). Herpetological Conservation and Biology, 4(2), 248251.Google Scholar
Ujvari, B., Casewell, N. R., Sunagar, K., Arbuckle, K., Wüster, W., Lo, N., O’Meally, D., Beckmann, C., King, G.F., Deplazes, E., & Madsen, T. (2015). Widespread convergence in toxin resistance by predictable molecular evolution. PNAS 112(38) 1191111916.Google Scholar
Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348(6234), 571573.Google Scholar
van Oppen, M. J. H., Oliver, J. K., Putnam, H. M., & Gates, R. D. (2015). Building coral reef resilience through assisted evolution. Proceedings of the National Academy of Sciences, 112(8), 23072313.Google Scholar
Watson, P. F. (1978). A review of techniques of semen collection in mammals. Paper presented at the Symposium of the Zoological Society of London.Google Scholar
Watson, P. F., & Holt, W. V. (2001). Cryobanking the Genetic Resource: Wildlife Conservation for the Future? Boca Raton, FL: CRC Press.Google Scholar
Wiedemann, C., Zahmel, J., & Jewgenow, K. (2013). Short-term culture of ovarian cortex pieces to assess the cryopreservation outcome in wild felids for genome conservation. BMC Veterinary Research, 9, 37.Google Scholar
Wildt, D. E. (1992). Genetic resource banks for conserving wildlife species: Justification, examples and becoming organized on a global basis. Animal Reproduction Science, 28(1–4), 247257.Google Scholar
Wildt, D. E., Ballou, J. D., Miller, P., Traylor-Holzer, K., & David, V. (2002). Report of genetic management for giant pandas ex situ workshop. Smithsonian National Zoological Park, Chinese Association of Zoological Gardens, and China Wildlife Conservation Association Chengdu, China.Google Scholar
Yulnawati, Y., Maheshwari, H., Rizal, M., & Boediono, A. (2013). The success rate of artificial insemination using post-thawed spotted buffaloes epididymal sperm. Media Peternakan, 36(2), 101105.Google Scholar
Zacariotti, R. L., Grego, K. F., Fernandes, W., Sant’Anna, S. S., & de Barros Vaz Guimarães, M. A. (2007). Semen collection and evaluation in free‐ranging Brazilian rattlesnakes (Crotalus durissus terrificus). Zoo Biology, 26(2), 155160.Google Scholar
Zimmerman, D. M., Mitchell, M. A., & Perry, B. H. (2013). Collection and characterization of semen from green iguanas (Iguana iguana). American Journal of Veterinary Research, 74(12), 15361541.Google Scholar

References

Araújo-Bissa, C. H. (2012). Identificação do perfil dos visitantes como subsídio para o Programa de Educação Ambiental e Inclusão Social da Fundação Parque Zoológico de São Paulo. São Vicente: Universidade Estadual Paulista.Google Scholar
Auricchio, A. L. R. (1999). Potencial da educação ambiental nos zoológicos Brasileiros. Publicações Avulsas do Instituto Pau-Brasil de História Natural, São Paulo, 1, 146.Google Scholar
Barreto, K. F. B., Guimarães, C. R. P., & Oliveira, I. S. S. (2009). O zoológico como recurso didático para a prática em Educação Ambiental. Salvador: Revista FACED.Google Scholar
Barreto, M. B. et al. (2008). Ludicidade e percepção infantil como instrumentos para prática da educação ambiental no zoológico de Salvador – BA. Revista Eletrônica do Mestrado em Educação Ambiental, 21, 462474.Google Scholar
Bazarra, L. (1994). Los zoológicos em caminho hacia lá educación: manual para el educado. México DF: Secretaria de Educación Pública.Google Scholar
Becker, L. (2003). Educação Ambiental no Zoológico Municipal de Gauiba (RS). São Paulo: Instituto Pau Brasil de História Natural.Google Scholar
Benirschke, K. (1987). Why do research in zoological gardens? Canadian Veterinary Journal, 28, 162164.Google Scholar
Bizerril, M. X. A. (2000). Humanos no zoológico. Revista Ciência Hoje, 28(163), 6467.Google Scholar
Carvalho, I. C. M. (2004). Educação ambiental crítica: nomes e endereçamentos da educação. In Layrargues, P. P. (Ed.), Identidades da Educação Ambiental Brasileira. Brasília: Ministério do Meio Ambiente.Google Scholar
Carvalho, I. C. M. (2008). A educação ambiental no Brasil. Educação Ambiental no Brasil. Retrieved from http://forumeja.org.br/sites/forumeja.org.br/files/Educa%C3%A7%C3%A3o%20Ambiental%20no%20Brasil%20(texto%20basico).pdf.Google Scholar
Carvalho, L. M. (2006). A temática ambiental e o processo educativo: dimensões e abordagens. In Cinquetti, H. S. & Logarezzi, A. (Eds.), Consumo e Resíduo: Fundamentos para o Trabalho Educativo. São Carlos: Edufscar.Google Scholar
Clayton, S., Fraser, J., & Saunders, C. D. (2009). Zoo experiences: Conversations, connections and concern for animals. Zoo Biology, 28, 377397.Google Scholar
Coe, J. C. (1987). What’s the message? Exhibit design for education. In American Association of Zoological Parks and Aquariums Regional Conference Proceedings. Wheeling, WV: American Association of Zoological Parks and Aquariums.Google Scholar
Conway, W. G. (1969). Zoos: Their changing roles. Science, 163, 4852.Google Scholar
Conway, W. G. (1995). Wild and zoo animal interactive management and habitat conservation. Biodiversity and Conservation, 4, 573594.Google Scholar
Conway, W. G. (2003). The role of zoos in the 21st century. International Zoo Yearbook, 38, 713.Google Scholar
Costa, G. O. (2004). Educação ambiental – Experiências dos zoológicos Brasileiros. Revista Eletrônica do Mestrado em Educação Ambiental, 13, 140150.Google Scholar
Dutta, T. (2005). Visitor profile at Peshwe Zoo, Maharashtra. Zoo’s Print, 10(8), 1316.Google Scholar
Falk, J. H., & Dierking, L. D. (1992). The Museum Experience. Washington, DC: Walesback Books.Google Scholar
Falk, J. H., Heimlich, J., & Bronnenkant, K. (2008). Using identity-related visit motivations as a tool for understanding adult zoo and aquarium visitors’ meaning-making. Curator, 51(1), 5579.Google Scholar
Figueiredo, A. N. (2013). Análise reflexiva da produção participativa e da dimensão crítica de materiais de Educação Ambiental no contexto das bacias hidrográficas no estado de São Paulo. 120fl. Dissertação (Mestrado). São Carlos: Universidade Federal de São Carlos.Google Scholar
Fonseca, F. S. R., & Oliveira, L. G. (2011). Concepções de meio ambiente dos educadores ambientais do Zoológico de Goiânia: implicações nas atividades e contribuições para a formação do sujeito ecológico. Educar em Revista, 41, 231246.Google Scholar
Freire, P. (1987). Pedagogia do Oprimido. 36th ed. Rio de Janeiro: Paz e Terra.Google Scholar
Galheigo, C. B. S., & Santos, G. M. M. (2009). Saberes dos visitantes do Zoológico de Salvador – BA sobre a fauna nativa e sua conservação. Revista Eletrônica do Mestrado em Educação Ambiental, 23, 515530.Google Scholar
Garcia, V. A. R., & Marandino, M. (2008). Zoológicos: que mensagem passamos? In Lozano, M. & Sanchez-Mora, C. (Eds.), Evaluando la comunicación de la ciência. Una perspectiva latino-americana. México DF; CYTED, AECI, DGDC-UNAM.Google Scholar
González, A., Moncada, J. A., & Araguren, J. (2009). Los visitantes del parque zoológico y botánico Bararida, estado Lara: Demanda real e implicaciones educativas ambientales. Investigación y Postgrado, 24(3), 213238.Google Scholar
Guimarães, M. (2004). Educação ambiental crítica. In Layrargues, P. P. (Ed.), Identidades da Educação Ambiental Brasileira. Brasília: Ministério do Meio Ambiente.Google Scholar
Gusset, M., & Dick, G. (2010). Building a future for wildlife? Evaluating the contribution of the world zoo and aquarium community to in situ conservation. International Zoo Yearbook, 44, 183191.Google Scholar
Iared, V. G., Di Tullio, A., & Oliveira, H. T. (2012). Impressões de educadoras/es ambientais em relação à visitas guiadas em um zoológico. Revista Eletrônica do Mestrado em Educação Ambiental, 28, 258273.Google Scholar
Knowles, J. M. (2003). Zoos and a century of change. The Zoological Society of London, 38, 2834.Google Scholar
Loureiro, C. F. B. (2004). Educação ambiental transformadora. In Layrargues, P. P. (Ed.), Identidades da Educação Ambiental Brasileira. Brasília: Ministério do Meio Ambiente.Google Scholar
Marandino, M. (2008). Educação em Museus: a mediação em foco. São Paulo: Faculdade de Educação da Universidade de São Paulo.Google Scholar
Marandino, M. et al. (2007). O potencial educativo dos zoológicos para além do conteúdo biológico. In II Encontro Nacional de Ensino de Biologia e I Encontro da Regional de Ensino de Biologia – Regional 4 (MG/TO/GO/DF) da Associação Brasileira de Ensino de Biologia. Uberlândia: Sbenbio.Google Scholar
McNamara, T. (2007). The role of zoos in biosurveillance. International Zoo Yearbook, 41, 1215.Google Scholar
Menegazzi, C. S. (2000). Espacios Extra Escolares de Educación. Belo Horizonte: Revista da Sociedade de Amigos da Fundação Zoo-botânica.Google Scholar
Mergulhão, M. C., & Vasaki, B. N. G. (1998). Educando para a conservação da natureza: sugestões de atividades em educação ambiental. São Paulo: EDUC.Google Scholar
Miller, B. et al. (2004). Evaluating the conservation mission of zoos, aquariums, botanical gardens, and natural history museum. Conservation Biology, 18, 8693.Google Scholar
Moncada, J. A., Aranguren, J., Díaz, E., Castill, M., & Benaya, J. (2002). Implicaciones prácticas de las preferencias de los visitantes del Parque Zoológico Caricuao, Caracas. Investigación y Postgrado, 17(1), 135158.Google Scholar
Morgan, J. M., & Hodgkinson, M. (1999). The motivation and social orientation of visitors attending a contemporary zoological park. Environment and Behavior, 31(2), 227239.Google Scholar
Oliveira, H. T. (2008). Popular education and environmental education in Latin America: converging path and aspirations. In Gonzáles-Gaudiano, E. & Peters, M. (Eds.), Environmental Education: Identity, Politics and Citizenship. 1st edn. Amsterdam: Sense Publishers.Google Scholar
Oliveira, H. T. (2012). Por que abordagens participativas e transdisciplinares na práxis da educação ambiental? In Matheus, C. E. & Moraes, A. J. (Eds.), Educação Ambiental: Momentos de Reflexão. São Carlos: RiMa Editora.Google Scholar
Oliveira, S. M. (2015). Educação Ambiental em Zoológicos: Potencialidades e Limitações das Estruturas Educadoras e das Atividades Educativas para a Conservação da Biodiversidade. São Carlos: Universidade Federal de São Carlos.Google Scholar
Oliveira, S. M., Iared, V. G., & Oliveira, H. T. (2011). Potencialidades e Lacunas da Educação Ambiental para a Conservação da Biodiversidade em Zoológicos Brasileiros. São Paulo: Encontro Internacional de Educação Aplicada à Conservação e Sustentabilidade, São Paulo (SP).Google Scholar
Oliveira, S. M., & Oliveira, H. T. (2014). Educação ambiental nos zoológicos brasileiros: quais são os objetos de pesquisa das dissertações e teses já produzidas? In III encontro internacional de educação aplicada à conservação e sustentabilidade. 2014. São Paulo: Fundação Parque Zoológico de São Paulo.Google Scholar
Packer, J. (2006). Learning for fun: The unique contribution of educational leisure experiences. Curator: The Museum Journal, 49(3), 329344.Google Scholar
Patrick, P. G., & Tunnicliffe, S. D. (2012). Zoo Talk. New York: Springer.Google Scholar
Patrick, P. G., Matthews, C. E., Ayers, D. F., & Tunnicliffe, S. D. (2007). Conservation and education: Prominent themes in zoo mission statements. The Journal of Environmental Education, 38, 5360.Google Scholar
Pernambuco, M. M., & Silva, A. F. G. (2006). Paulo Freire: A educação e a transformação do mundo. In Carvalho, I. C. M., Grün, M., & Trajber, R. (Eds.), Pensar o ambiente: bases filosóficas para a educação ambiental. Brasília: Ministério da Educação, Secretaria de Educação Continuada, Alfabetização e Diversidade, UNESCO.Google Scholar
Reade, L. S., & Waran, N. K. (1996). The modern zoo: How do people perceive zoo animals? Applied Animal Behavior Science, 47, 109118.Google Scholar
Robinson, M. H. (1992). Global change, the future of biodiversity, and the future of the zoos. Biotropica, 24, 345352.Google Scholar
São Paulo (2008). Plano de Manejo do Parque Estadual das Fontes do Ipiranga. São Paulo: Instituto de Botânica.Google Scholar
Sorrentino, M. (1999). Crise ambiental e educação. In Quintas, J. S. (Ed.), Pensando e praticando a educação ambiental na gestão do meio ambiente. Brasília: Ibama.Google Scholar
Souza, D. C., & Nascimento-Junior, A. F. (2014). A pesquisa em educação ambiental nas dissertações e teses das Pós graduações no Brasil: O que estudos do tipo “estado da arte” revelam? Gaia Scientia, 8.Google Scholar
Schwammer, G. (2001). Education: On-site programs. In Bell, C. (Ed.), Encyclopedia of the World’s Zoo. Chicago: Fitzroy.Google Scholar
Turley, S. K. (1999). Conservation and tourism in the traditional UK zoo. Journal of Tourism Studies, 10, 213.Google Scholar
Wals, A. E. J. (1999). Environmental Education and Biodiversity. ICK-report No. 36. Wagningen: National Reference Centre for Nature Management.Google Scholar
Wemmer, C., Teare, J. A., & Pickett, C. (1991). Manual del Biólogo de Zoológicos. Washington, DC: National Zoological Park. Smithsonian Institute.Google Scholar
Whately, M. et al. (2008). Parques Urbanos Municipais de São Paulo – Subsídios para a Gestão. São Paulo: Instituto Socioambiental.Google Scholar
WAZA (2005). Building a Future for Wildlife: The World Zoo an Aquarium Conservation Strategy. Bern: World Association of Zoos and Aquariums.Google Scholar

References

Dudzinski, K. M., Clark, C. W., & Würsig, B. (1995). A mobile video/acoustic system for simultaneously recording dolphin behavior and vocalizations underwater. Aquatic Mammals, 21(3), 187193.Google Scholar
Dudzinski, K. M., Danaher-Garcia, N., & Gregg, J. D. (2013). Pectoral fin contact between dolphin dyads at Zoo Duisburg, with comparison to other dolphin study populations. Aquatic Mammals, 39(4), 335343.Google Scholar
Dudzinski, K. M., Gregg, J. D., Paulos, R. D., & Kuczaj, S.A. (2010). A comparison of pectoral fin contact behaviour for three distinct dolphin populations. Behavioural Processes, 84, 559567.Google Scholar
Dudzinski, K. M., Gregg, J. D., Ribic, C. A., & Kuczaj, S. A. (2009). A comparison of pectoral fin contact between two different wild dolphin populations. Behavioural Processes, 80, 182190.Google Scholar
Evans-Wilent, J., & Dudzinski, K. M. (2013). Vocalizations associated with pectoral fin contact in bottlenose dolphins (Tursiops truncatus). Behavioural Processes, 100, 7481.Google Scholar
Greene, W., Melillo-Sweeting, K., & Dudzinski, K. M. (2011). Comparing object play in captive and wild dolphins. International Journal of Comparative Psychology, 24(3), 292306.Google Scholar
Melillo-Sweeting, K., Yeater, D., & Dudzinski, K. M. (2015). Dolphin sightings near the coast of Bimini, The Bahamas, 2003–2013. Aquatic Mammals, 41(3), 245251.Google Scholar
Romanelli, F., Bird, E., & Ryan, M. (2009). Learning styles: A review of theory, application, and best practices. American Journal of Pharmaceutical Education, 73(1), 15.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×