Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-27T09:59:31.064Z Has data issue: false hasContentIssue false

Chapter 11 - Sex ratio control in arrhenotokous and pseudo-arrhenotokous mites

Published online by Cambridge University Press:  06 August 2009

Maurice W. Sabelis
Affiliation:
Institute for Systematics and Population Biology, University of Amsterdam, The Netherlands
Cornelis J. Nagelkerke
Affiliation:
Institute of Systematics and Population Biology, Section Population Biology, University of Amsterdam, The Netherlands
Johannes A. J. Breeuwer
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands
Ian C. W. Hardy
Affiliation:
University of Nottingham
Get access

Summary

Summary

Some mite species are male-diploid while others are haplodiploid, with haploid males arising from unfertilized eggs (arrhenotoky) or from fertilized eggs via the elimination of the paternal genome at some stage before or during spermatogenesis (pseudo-arrhenotoky). Arrhenotoky confers the advantage to the female of controlling the offspring sex ratio by controlling the fertilization process. It is now well established that sex ratio control is also possible under pseudo-arrhenotoky. However, it is still not known how diplodiploidy affects the possibilities for sex ratio control.

Shifts in the offspring sex ratio have been demonstrated in relation to density, food availability and mating delays. This ability to control the sex ratio can be an adaptive trait when population mating structure varies. Theory based on single-generation mating groups predicts a female bias and can give qualitatively correct predictions, but in several cases sex ratios are more female biased than these predictions. It is argued that mites often show complex population mating structures, such as local multigeneration populations that are themselves subdivided into single-generation mating groups. This creates selection at various hierarchical levels and it is shown theoretically that these additional selection levels can create a stronger female bias in the offspring sex ratio. Before accepting this explanation, more critical tests are needed under different population mating structures. Mites are ideal objects for such studies because their population mating structures vary greatly.

Type
Chapter
Information
Sex Ratios
Concepts and Research Methods
, pp. 235 - 253
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, M & Ludwig, D (1993) Oedipal mating as a factor in sex allocation in haplodiploids. Philosophical Transactions of the Royal Society, London, series B, 341, 195–202CrossRefGoogle Scholar
Boot, W J, , Baalen M & Sabelis, M W (1995) Why do Varroa mites invade worker brood cells of the honey bee despite lower reproductive success?Behavioral Ecology and Sociobiology, 36, 283–289CrossRefGoogle Scholar
Breeuwer, J A J (1997) Wolbachia and cytoplasmic incompatibility in the spider mites Tetranychus urticae and T. turkestani. Heredity, 79, 41–47CrossRefGoogle Scholar
Breeuwer, J A J & Jacobs, G (1996) Wolbachia: intracellular manipulators of mite reproduction. Experimental and Applied Acarology, 20, 421–434CrossRefGoogle ScholarPubMed
Bull, J J (1979) An advantage for the evolution of male haploidy and systems with similar genetic transmission. Heredity, 43, 361–381CrossRefGoogle Scholar
Bull JJ (1983) The Evolution of Sex-determining Mechanisms. Menlo Park, Canada: Benjamin Cummings
Bulmer, M G & Taylor, P D (1980) Sex ratio under the haystack model. Journal of Theoretical Biology, 86, 83–89CrossRefGoogle ScholarPubMed
Cavalier-Smith, T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. Journal of Cell Science, 34, 247–278Google ScholarPubMed
Cavalier-Smith T (1985) Cell volume and the evolution of eukaryote genome size. In: T Cavalier-Smith (ed) The Evolution of Genome Size, pp 105–184. Chichester, UK: John Wiley
Charlat, S & Merçot, H (2000) Wolbachiatrends. Trends in Ecology and Evolution, 15, 438–439CrossRefGoogle Scholar
Congdon, B D & McMurtry, J A (1988) Morphological evidence establishing the loss of paternal chromosomes in males of predatory phytoseiid mites, genus Euseius. Entomologia Experimentalis et Applicata, 48, 95–96CrossRefGoogle Scholar
Crozier RH (1985) Adaptive consequences of male haploidy. In: W Helle & M W Sabelis (eds) Spider Mites: Their Biology, Natural Enemies and Control, pp 201–222. World Crop Pests volume 1B. Amsterdam: Elsevier
Cruickshank, R H & Thomas, R H (1999) Evolution of haplodiploidy in dermanyssine mites (Acari: Mesostigmata). Evolution, 53, 1796–1803CrossRefGoogle Scholar
Faraji, F, Janssen, A, , Rijn P C J & Sabelis, M W (2000) Kin recognition by the predatory mite Iphiseius degenerans: discrimination among own, conspecific and heterospecific eggs. Ecological Entomology, 25, 147–155CrossRefGoogle Scholar
Frank, S A (1986) Hierarchical selection theory and sex ratios. I. General solutions for structured populations. Theoretical Population Biology, 29, 312–342CrossRefGoogle ScholarPubMed
Frank, S A (1987) Demography and sex ratio in social spiders. Evolution, 41, 1267–1281CrossRefGoogle ScholarPubMed
Franks, N R, Healey, K J & Byrom, L (1991) Studies on the relationship between the ant ectoparasite Antennophorus grandis (Acarina: Antennophoridae) and its host Lasius flavus (Hymenoptera: Formicidae). Journal of Zoology, London, 225, 59–70CrossRefGoogle Scholar
Geest, L P S, Elliot, S L, Breeuwer, J A J & Beerling, E A M (2000) Diseases of mites. Experimental and Applied Acarology, 24, 497–560CrossRefGoogle ScholarPubMed
Gotoh, T, Bruin, J, Sabelis, M W & Menken, S B J (1993) Host race formation in Tetranychus urticae: genetic differentiation, host plant preference, and mate choice in a tomato and a cucumber strain. Entomologia Experimentalis et Applicata, 68, 171–178CrossRefGoogle Scholar
Gotoh, T, Sugasawa, J & Nagata, T (1999) Reproductive compatibility of the two-spotted spider mite (Tetranychus urticae) infected with Wolbachia. Entomological Science, 2, 289–295Google Scholar
Greeff, J M (1997) Offspring allocation in externally ovipositing fig wasps with varying clutch size and sex ratio. Behavioral Ecology, 8, 500–505CrossRefGoogle Scholar
Guanghua W, Moahua XYuL, & Mingrong B (1999) Studies on biting and transovarial transmission of Rickettsia tsutsugamushi in Leptotrombidium (L.) goahuense Tsai and Chow (Trombiculidae). In: Proceedings of the Ⅺ International Acaralogy Congress, pp 447–449
Haig, D (1993a) The evolution of unusual chromosomal systems in coccoids – extraordinary sex-ratios revisited. Journal of Evolutionary Biology, 6, 69–77CrossRefGoogle Scholar
Haig, D (1993b) The evolution of unusual chromosomal systems in sciarid flies – intragenomic conflict and the sex-ratio. Journal of Evolutionary Biology, 6, 249–261CrossRefGoogle Scholar
Hastriter, M W, Kelly, D J, Chan, T C, Phang, O W & Lewis, G E (1987) Evaluation of Leptotrombidium (Leptotrombidium) fletcheri (Acari: Trombiculidae) as a potential vector of Ehrlichia sennetsu. Journal of Medical Entomology, 24, 542–546CrossRefGoogle ScholarPubMed
Helle W & Sabelis M W (1985) Spider Mites: Their Biology, Natural Enemies and Control. World Crop Pest Series, volume 1A, B. Amsterdam: Elsevier
Helle, W, Bolland, H R, Arendonk, R, Boer, R, Schulten, G G M & Russell, V M (1978) Genetic evidence for biparental males in haplo-diploid predator mites (Acarina: Phytoseiidae). Genetica, 49, 165–171CrossRefGoogle Scholar
Hoy, M A (1979) Parahaploidy of the ‘arrhenotokous’ predator Metaseiulus occidentalis (Nesbitt) (Acari: Phytoseiidae) demonstrated by X-irradiation of males. Entomologia Experimentalis et Applicata, 26 97–104CrossRefGoogle Scholar
Hurst, G G D & Jiggins, F M (2000) Male-killing bacteria in insects: mechanisms, incidence, and implications. Emerging Infectious Diseases, 6, 329–336CrossRefGoogle ScholarPubMed
Hurst GGD, Hurst LD & Majerus MEN (1997) Cytoplasmic sex ratio distorters. In: S L O'Neill, A A Hoffmann & J H Werren (eds) Influential Passengers: Microbes and Invertebrate Reproduction, pp 124–154. Oxford, UK: Oxford University Press
Ignatowicz, S (1986) Sex ratio in the acarid mites (Acaridae: Acaroidea). Roczniki Nauk Rolniczych, Seria E,16 101–110Google Scholar
Izraylevich, S & Gerson, U (1995) Sex ratio of Hemisarcoptes coccophagus, a mite parasitic on insects: density-dependent processes. Oikos, 74, 439–446CrossRefGoogle Scholar
Izraylevich, S & Gerson, U (1996) Sex allocation by a mite parasitic on insects: local mate competition, host quality and operational sex ratio. Oecologia, 108, 676–682CrossRefGoogle ScholarPubMed
Johanowicz, D L & Hoy, M A (1996) Wolbachiain a predator-prey system: 16S ribosomal DNA analysis of two phytoseiids (Acari: Phytoseiidae) and their prey (Acari: Tetranychidae). Annals of the Entomological Society of America, 89, 435–441CrossRefGoogle Scholar
Johanowicz, D L & Hoy, M A (1998a) The manipulation of arthropod reproduction by Wolbachia endosymbionts. Florida Entomologist, 81, 310–317CrossRefGoogle Scholar
Johanowicz, D L & Hoy, M A (1998b) Experimental induction and termination of non-reciprocal reproductive incompatibilities in a parahaploid mite. Entomologia Experimentalis et Applicata, 87, 51–58CrossRefGoogle Scholar
Johanowicz, D L & Hoy, M A (1999) Wolbachia infection dynamics in experimental laboratory populations of Metaseiulus occidentalis. Entomologia Experimentalis et Applicata, 93 259–268CrossRefGoogle Scholar
Jong, J H, Lobbes, P V & Bolland, H R (1981) Karyotypes and sex determination in two species of laelapid mites (Acari, Gamasida). Genetica, 55, 187–190CrossRefGoogle Scholar
Kaliszewski M & Wrensch DL (1993) Evolution of sex determination and sex ratio within the mite cohort Tarsonemina (Acari: Heterostigmata). In: D L Wrensch & M A Ebbert (eds) Evolution and Diversity of Sex Ratio in Insects and Mites, pp 192–213. New York: Chapman & Hall
Kethley, J (1971) Population regulation in quill mites (Acarina: Syringophilidae). Ecology, 52, 1113–1118CrossRefGoogle Scholar
Krainacker, D A & Carey, J R (1990) Effect of age at first mating on primary sex-ratio of the two-spotted spider-mite. Experimental and Applied Acarology, 9, 169–175CrossRefGoogle Scholar
Lesna, I & Sabelis, M W (1999) Diet-dependent female choice for males with ‘good genes’. Nature, 401, 581–584CrossRefGoogle Scholar
Lewis, W M J (1983) Interruption of synthesis as a cost of sex in small organisms. American Naturalist, 121, 825–834CrossRefGoogle Scholar
Lindquist EE, Sabelis MW & Bruin J (eds) (1996) Eriophyoid Mites – Their Biology, Natural Enemies and Control. World Crop Pest Series, volume 6. Amsterdam: Elsevier
Maynard, Smith J (1964) Group selection and kin selection. Nature, 201, 1145–1147Google Scholar
McMurtry, J A & Croft, B A (1997) Life-styles of phytoseiid mites and their role in biological control. Annual Review of Entomology, 42, 291–321CrossRefGoogle Scholar
Momen, F M (1994) Fertilization and starvation affecting reproduction in Amblyseius barkeri (Hughes) (Acari, Phytoseiidae). Anzeiger für Schädlingskunde, Pflanzenschutz und Umweltschutz, 67 130–132CrossRefGoogle Scholar
Mori, K, Saito, Y & Sakagami, T (1999) Effects of the nest web and female attendance on survival of young in the subsocial spider mite Schizotetranychus longus (Acari: Tetranychidae). Experimental and Applied Acarology, 235 411–418CrossRefGoogle Scholar
Nagelkerke, C J (1994) Simultaneous optimization of egg distribution and sex allocation in a patchstructured population. American Naturalist, 144 262–284CrossRefGoogle Scholar
Nagelkerke CJ & Sabelis MW (1991) Precise sex-ratio control in the pseudo-arrhenotokous phytoseiid mite, Typhlodromus occidentalis Nesbitt. In: R Schuster & P W Murphy (eds) The Acari: Reproduction, Development and Life-History Strategies, pp 193–208. London: Chapman & Hall
Nagelkerke, C J & Sabelis, M W (1996) Hierarchical levels of spatial structure and their consequences for the evolution of sex allocation in mites and other arthropods. American Naturalist, 148, 16–39CrossRefGoogle Scholar
Nagelkerke, C J & Sabelis, M W (1998) Precise control of sex allocation in pseudo-arrhenotokous phytoseiid mites. Journal of Evolutionary Biology, 11 649–684CrossRefGoogle Scholar
Nagelkerke, C J, , Baalen M & Sabelis, M W (1996) When should a female avoid adding eggs to the clutch of another female? A simultaneous oviposition and sex allocation game. Evolutionary Ecology, 10, 475–497CrossRefGoogle Scholar
Nelson-Rees, W A, Hoy, M A & Roush, R T (1980) Heterochromatinization, chromatin elimination and haploidization in the parahaploid mite Metaseiulus occidentalis (Nesbitt) (Acarina: Phytoseiidae). Chromosoma (Berl.),77 263–276CrossRefGoogle Scholar
Norton RA, Kethley JB, Johnston DE & O'Connor BM (1993) Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: D L Wrensch & M A Ebbert (eds) Evolution and Diversity of Sex Ratio in Haplodiploid Insects and Mites, pp 8–99. New York: Chapman & Hall
Opijnen, T & Breeuwer, J A J (1999) High temperatures eliminate Wolbachia, a cytoplasmic incompatibility inducing endosymbiont, from the two-spotted spider mite. Experimental and Applied Acarology, 23, 871–881CrossRefGoogle ScholarPubMed
Palmer, S C & Norton, R A (1990) Further experimental proof of thelytokous parthenogenesis in oribatid mites (Acari, Oribatida, Desmonomata). Experimental and Applied Acarology, 8, 149–159CrossRefGoogle Scholar
Palmer, S C & Norton, R A (1992) Genetic diversity in thelytocous oribatid mites (Acari, Acariformes, Desmonomata). Biochemical Systematics and Ecology, 20, 219–231CrossRefGoogle Scholar
Pels, B & Sabelis, M W (1999) Local dynamics, overexploitation and predator dispersal in an acarine predator-prey system. Oikos, 86, 573–583CrossRefGoogle Scholar
Perrot-Minnot, M J & Navajas, M (1995) Biparental inheritance of RAPD markers in males of the pseudo-arrhenotokous mite Typhlodromus pyri. Genome, 38, 838–844CrossRefGoogle ScholarPubMed
Perrot-Minnot, M J & Norton, R A (1997) Obligate thelytoky in oribatid mites: no evidence for Wolbachia inducement. Canadian Entomologist, 129, 691–698CrossRefGoogle Scholar
Perrot-Minnot, M J, Lagnel, J, Migeon, A & Navajas, M (2000) Tracking paternal genes with DALP markers in a pseudoarrhenotokous reproductive system: biparental transmission but haplodiploid-like inheritance in the mite Neoseiulus californicus. Heredity, 84, 702–709CrossRefGoogle Scholar
Pijnacker, L P, Ferwerda, M A, Bolland, H R & Helle, W (1980) Haploid female parthenogenesis in the false spider mite Brevipalpus obovatus (Acari: Tenuipalpidae). Genetica, 51, 211–214CrossRefGoogle Scholar
Pijnacker, L P, Ferwerda, M A & Helle, W (1981) Cytological investigations of the female and male reproductive system of the parthenogenetic privet mite Brevipalpus obovatus Donnadieu (Phytoptipalpidae, Acari). Acarologia, 22, 157–163Google Scholar
Radwan, J (1993a) Kin recognition in the acarid mite, Caloglyphus berlesei – negative evidence. Animal Behaviour, 45, 200–202CrossRefGoogle Scholar
Radwan, J (1993b) The adaptive significance of male polymorphism in the acarid mite Caloglyphus berlesei. Behavioral Ecology and Sociobiology, 33, 201–208CrossRefGoogle Scholar
Radwan, J (1995) Male morph determination in 2 species of acarid mites. Heredity, 74, 669–673CrossRefGoogle Scholar
Radwan, J & Bogacz, I (2000) Comparison of life-history traits of the two male morphs of the bulb mite, Rhizoglyphus robini. Experimental and Applied Acarology, 24 115–121CrossRefGoogle ScholarPubMed
Radwan, J, Czyz, M, Konior, M & Kolodziejczyk, M (2000) Aggressiveness in two male morphs of the bulb mite Rhizoglyphus robini. Ethology, 106, 53–62CrossRefGoogle Scholar
Roberts, L W, Rapmund, G & Cadigan, F C (1977) Sex ratios in Rickettsia tsutsugamushi-infected and noninfected colonies of Leptotrombidium (Acari: Trombiculidae). Journal of Medical Entomology, 14 89–92CrossRefGoogle Scholar
Roeder, C, Harmsen, R & Mouldey, S (1996) The effects of relatedness on progeny sex ratio in spider mites. Journal of Evolutionary Biology, 9, 143–151CrossRefGoogle Scholar
Roush, R T & Hoy, M A (1981) Genetic improvement of Metaseiulus occidentalis: selection with methomyl, dimethoate and carbaryl and genetic analysis of carbaryl resistance. Journal of Economic Entomology, 74 138–141CrossRefGoogle Scholar
Ruf A (1993) Die Morphologische Variabilität und Fortpflanzungsbiologie der Raubmilbe Hypoaspis aculeifer (Canestrini 1883) (Mesostigmata: Laelapidae). Bremen: Universität Bremen
Sabelis MW (1985a) Reproductive Strategies. In: W Helle & M W Sabelis (eds) Spider Mites: Their Biology, Natural Enemies and Control, pp 265–278. World Crop Pest Series, volume 1A. Amsterdam: Elsevier
Sabelis MW (1985b) Sex Allocation. In: W Helle & M W Sabelis (eds) Spider Mites: Their Biology, Natural Enemies and Control, pp 83–94. World Crop Pest Series, volume 1B. Amsterdam: Elsevier
Sabelis MW & Bruin J (1996) Evolutionary ecology: life history patterns, food plant choice and dispersal. In: EE Lindquist, MW Sabelis & J Bruin (eds) Eriophyoid Mites: Their Biology, Natural Enemies and Control, pp 329–366. Amsterdam: Elsevier
Sabelis MW & Dicke M (1985) Long-range dispersal and searching behaviour. In: W Helle & M W Sabelis (eds) Spider Mites: Their Biology, Natural Enemies and Control, pp 141–160. World Crop Pest Series, volume~1B. Amsterdam: Elsevier
Sabelis MW & Janssen A (1993) Evolution of life-history patterns in the Phytoseiidae. In: M A Houck (ed) Mites. Ecological and Evolutionary Analyses of Life-History Patterns, pp 70–98. New York: Chapman & Hall
Sabelis, M W & Nagelkerke, C J (1987) Sex allocation strategies of pseudo-arrhenotokous phytoseiid mites. Netherlands Journal of Zoology, 37, 117–136CrossRefGoogle Scholar
Sabelis, M W & Nagelkerke, C J (1988) Evolution of pseudo-arrhenotoky. Experimental and Applied Acarology, 4, 301–318CrossRefGoogle Scholar
Sabelis MW & Nagelkerke CJ (1993) Sex allocation and pseudoarrhenotoky in phytoseiid mites. In: D L Wrensch & M A Ebbert (eds) Evolution and Diversity of Sex Ratio in Haplodiploid Insects and Mites, pp 512– 541. New York: Chapman & Hall
Sabelis MW & Scholman M (1989) Sex ratio control in a pseudo-arrhenotokous phytoseiid mite. In: GP Channabasavanna & CA Viraktamath (eds) Progress in Acarology, p 267. VII International Acarology Congress, 1986. Oxford and I. B. H., New Delhi, India
Sabelis MW & van der Meer J (1986) Local dynamics of the interaction between predatory mites and two-spotted spider mites. In: J A J Metz & O Diekmann (eds) Dynamics of Physiologically Structured Populations, pp 322–344. Lecture Notes in Biomathematics,68. Berlin: Springer-Verlag
Sabelis, M W, Diekmann, O & Jansen, V A A (1991) Metapopulation persistence despite local extinction: predator-prey patch models of the Lotka-Volterra type. Biological Journal of the Linnean Society, 42, 267–283CrossRefGoogle Scholar
Saito, Y (1990a) Factors determining harem ownership in a subsocial spider-mite (Acari, Tetranychidae). Journal of Ethology, 8, 37–43CrossRefGoogle Scholar
Saito, Y (1990b) Harem and non-harem type mating systems in 2 species of subsocial spider-mites (Acari, Tetranychidae). Researches on Population Ecology, 32, 263–278CrossRefGoogle Scholar
Saito, Y (1994) Do males of Schizotetranychus miscanthi (Acari, Tetranychidae) recognize kin in male competition. Journal of Ethology, 12, 15–17CrossRefGoogle Scholar
Saito, Y (1995) Clinal variation in male-to-male antagonism and weaponry in a subsocial mite. Evolution, 49, 413–417CrossRefGoogle Scholar
Saito, Y (2000) Do kin selection and intra-sexual selection operate in spider mites?Experimental and Applied Acarology, 24, 351–363CrossRefGoogle ScholarPubMed
Saito, Y & Sahara, K (1999) Two clinal trends in male-male aggressiveness in a subsocial spider mite (Schizotetranychus miscanthi). Behavioral Ecology and Sociobiology, 46 25–29CrossRefGoogle Scholar
Saito, Y, Mori, K, Chittenden, A R & Sato, Y (2000a) Correspondence of male-to-male aggression to spatial distribution of individuals in field populations of a subsocial spider mite. Journal of Ethology, 18, 79–83CrossRefGoogle Scholar
Saito, Y, Sahara, K & Mori, K (2000b) Inbreeding depression by recessive deleterious genes affecting female fecundity of a haplo-diploid mite. Journal of Evolutionary Biology, 13 668–678CrossRefGoogle Scholar
Schrader, F & Hughes-Schrader, S (1931) Haploidy in Metazoa. Quarterly Review of Biology, 6 411–438CrossRefGoogle Scholar
Schulten GGM (1985) pseudo-arrhenotoky. In: W Helle & M W Sabelis (eds) Spider Mites, their Biology, Natural Enemies and Control, pp 67–72. World Crop Pest Series, volume 1B Amsterdam: Elsevier
Stiefel, V L & Margolies, D C (1992) Do components of colonization–dispersal cycles affect the offspring sex ratios of Banks grass mites (Oligonychus pratensis)?Entomologia Experimentalis et Applicata, 64 161–166CrossRefGoogle Scholar
Takahashi, M, Urakami, H, Yoshida, Y, Furuya, Y, Misumi, H, Hori, E, Kawamura, A & Tanaka, H (1997) Occurrence of high ratio of males after introduction of minocycline in a colony of Leptotrombidium fletcheri infected with Orientia tsutsugamushi. European Journal of Epidemiology, 13, 19–23CrossRefGoogle Scholar
Tienderen, P H & , Jong G (1986) Sex ratio under the haystack model: polymorphism may occur. Journal of Theoretical Biology, 122, 69–81CrossRefGoogle Scholar
Toyoshima, S & Amano, H (1998) Effect of prey density on sex ratio of two predacious mites, Phytoseiulus persimilis Athias-Henriot and Amblyseius womersleyi (Acari: Phytoseiidae). Experimental and Applied Acarology, 22, 709–723CrossRefGoogle Scholar
Toyoshima, S & Amano, H (1999a) Cytological evidence of pseudo-arrhenotoky in two phytoseiid mites, Phytoseiulus persimilis Athias-Henriot and Amblyseius womersleyi Schicha. Journal of the Acarological Society of Japan, 8, 135–142CrossRefGoogle Scholar
Toyoshima, S & Amano, H (1999b) Comparison of development and reproduction in offspring produced by females of Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) under two prey conditions. Applied Entomology and Zoology, 34, 285–292CrossRefGoogle Scholar
Toyoshima, S, Nakamura, M, Nagahama, Y & Amano, H (2000) Process of egg formation in the female body cavity and fertilization in male eggs of Phytoseiulus persimilis (Acari: Phytoseiidae). Experimental and Applied Acarology, 24 441–451CrossRefGoogle Scholar
Vala, F, Breeuwer, J A J & Sabelis, M W (2000) Wolbachia-induced ‘hybrid breakdown’ in the two-spotted spider mite Tetranychus urticae Koch. Proceedings of The Royal Society of London, series B, 267 1931–1937CrossRefGoogle ScholarPubMed
Warren, E (1940) On the genital system of Dermanyssus gallinae (De Geer), and several other Gamasidae. Annals Natal Museum, 9, 409–459Google Scholar
Weeks, A R & Breeuwer, J A J (2001) Wolbachia induced parthenogenesis in a genus of phytophagous mites. Proceedings of the Royal Society, London, series B, 268 2245–2251CrossRefGoogle Scholar
Weeks, A R, Marec, F & Breeuwer, J A J (2001) A mite species that consists entirely of haploid females. Science, 292, 2497–2482CrossRefGoogle ScholarPubMed
Wilson, D S & Colwell, R K (1981) Evolution of sex ratio in structured demes. Evolution, 35, 882–897CrossRefGoogle ScholarPubMed
Wrensch DL (1993) Evolutionary flexibility through haploid males or how chance favors the prepared genome. In: D L Wrensch & M A Ebbert (eds) Evolution and Diversity of Sex Ratio in Insects and Mites, pp 118–149. New York: Chapman & Hall
Wrensch, D L & Johnston, D E (1983) Sexual dimorphism in deutonymphs of mites of the family Parasitidae (Acari: Mesostigmata). Annals of the Entomological Society of America, 76 473–474CrossRefGoogle Scholar
Young, S S Y, Wrensch, D L & Kongchuensin, M (1986) Control of sex ratio by female spider mites. Entomologia Experimentalis et Applicata, 40, 53–60CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×