Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T12:48:27.398Z Has data issue: false hasContentIssue false

Chapter 7 - Glomerular Diseases Associated with Crescentic Glomerulonephritis (Rapidly Progressive Glomerulonephritis)

Published online by Cambridge University Press:  01 March 2017

Xin Jin (Joseph) Zhou
Affiliation:
Baylor University Medical Center, Dallas
Zoltan G. Laszik
Affiliation:
University of California, San Francisco
Tibor Nadasdy
Affiliation:
Ohio State University
Vivette D. D'Agati
Affiliation:
Columbia University, New York
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Churg, J and Sobin, L. Classification of glomerulonephritis. In Renal Disease Classification and Atlas of Glomerular Diseases. Churg, J, Bernstein, J, Glassock, R (eds). Igaku-Shoin: Tokyo, 1995: 319.Google Scholar
Jennette, JC. Rapidly progressive crescentic glomerulonephritis. Kidney Int 2003; 63(3): 1164–77.Google ScholarPubMed
Thorner, PS, Ho, M, Eremina, V, Sado, Y, and Quaggin, S. Podocytes contribute to the formation of glomerular crescents. J Am Soc Nephrol 2008; 19(3): 495502.Google Scholar
Tipping, PG, Kitching, PR, Holdsworth, SR. The formation of the glomerular crescent. In Immunologic Renal Diseases (2nd edn), Neilson, EG, Couser, WG (eds). Lippincott Williams & Wilkins: Philadelphia, 2001.Google Scholar
Tipping, PG and Kitching, AR. Glomerulonephritis, Th1 and Th2: what’s new? Clin Exp Immunol 2005; 142(2): 207–15.Google Scholar
Singh, SK, Jeansson, M, Quaggin, SE. New insights into the pathogenesis of cellular crescents. Curr Opin Nephrol Hypertens 2011; 20: 258–62.Google Scholar
Le Hir, M, Keller, C, Eschmann, V, et al. Podocyte bridges between the tuft and Bowman’s capsule: an early event in experimental crescentic glomerulonephritis. J Am Soc Nephrol 2001; 12(10): 2060–71.Google Scholar
Thorner, PS, Ho, M, Eremina, V, Sado, Y, Quaggin, S. Podocytes contribute to the formation of glomerular crescents. J Am Soc Nephrol 2008; 19(3): 495502.CrossRefGoogle Scholar
Bariety, J, Nochy, D, Mandet, C, et al. Podocytes undergo phenotypic changes and express macrophagic-associated markers in idiopathic collapsing glomerulopathy. Kidney Int 1998; 53(4): 918–25.Google Scholar
Bariety, J, Bruneval, P, Meyrier, A, et al. Podocyte involvement in human immune crescentic glomerulonephritis. Kidney Int 2005; 68(3): 1109–19.Google Scholar
Moeller, MJ, Soofi, A, Hartmann, I, et al. Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis. J Am Soc Nephrol 2004; 15(1): 61–7.Google Scholar
Shkreli, M, Sarin, KY, Pech, MF, et al. Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling. Nature Med 2012; 18(1): 111–9.CrossRefGoogle Scholar
Ding, M, Cui, S, Li, C, et al. Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nature Med 2006; 12(9): 1081–7.Google Scholar
Ohse, T, Vaughan, MR, Kopp, JB, et al. De novo expression of podocyte proteins in parietal epithelial cells during experimental glomerular disease. Am J Physiol Renal Physiol 2010; 298(3): F70211.Google Scholar
Smeets, B, Uhlig, S, Fuss, A, et al. Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells. J Am Soc Nephrol 2009; 20(12): 2604–15.CrossRefGoogle ScholarPubMed
Sicking, EM, Fuss, A, Uhlig, S, et al. Subtotal ablation of parietal epithelial cells induces crescent formation. J Am Soc Nephrol 2012; 23(4): 629–40.Google Scholar
Ronconi, E, Sagrinati, C, Angelotti, ML, et al. Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol 2009; 20(2): 322–32.CrossRefGoogle ScholarPubMed
Appel, D, Kershaw, DB, Smeets, B, et al. Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol 2009; 20(2): 333–43.CrossRefGoogle ScholarPubMed
Lasagni, L, Ballerini, L, Angelotti, ML, et al. Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells 2010; 28(9): 1674–85.Google Scholar
Smeets, B, Angelotti, ML, Rizzo, P, et al. Renal progenitor cells contribute to hyperplastic lesions of podocytopathies and crescentic glomerulonephritis. J Am Soc Nephrol 2009; 20(12): 2593–603.Google Scholar
Smeets, B, Moeller, MJ. Parietal epithelial cells and podocytes in glomerular diseases. Semin Nephrol 2012; 32(4): 357–67.Google Scholar
Ryu, M, Migliorini, A, Miosge, N, et al. Plasma leakage through glomerular basement membrane ruptures triggers the proliferation of parietal epithelial cells and crescent formation in non-inflammatory glomerular injury. J Pathol 2012; 228: 482–94.CrossRefGoogle ScholarPubMed
Stilmant, MM, Bolton, WK, Sturgill, BC, Schmitt, GW, Couser, WG. Crescentic glomerulonephritis without immune deposits: clinicopathologic features. Kidney Int 1979; 15(2): 184–95.CrossRefGoogle ScholarPubMed
Jennette, JC, Falk, RJ, Andrassy, K, et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum 1994; 37(2):187–92.CrossRefGoogle ScholarPubMed
Klinger, H. Grenzformen der Periarteriitis Nodosa. Frankf Z Pathol 1931; 42: 455–80.Google Scholar
Wegener, F. Ueber generalisierte septische Gefasserkrankungen. Verh Deut Pathol Ges 1936; 29: 202–10.Google Scholar
Wegener, F. Ueber eine eigenartige rhinogene Granulomatose mit besonderer Beteiligung des Arteriensystems und der Nieren. Beitr Pathol Anat 1939; 102: 3068.Google Scholar
Falk, RJ, Gross, WL, Guillevin, L, et al. Granulomatosis with polyangiitis (Wegener’s): an alternative name for Wegener’s granulomatosis. Arthritis Rheum 2011; 63(4): 863–4.Google Scholar
Jennette, JC, Falk, RJ, Bacon, PA, et al. Revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum 2013; 65: 111.Google Scholar
Berden, AE, Ferrario, F, Hagen, EC, et al. Histopathologic classification of ANCA-associated glomerulonephritis. J Am Soc Nephrol 2010; 21(10): 1628–36.Google Scholar
Tanna, A, Guarino, L, Tam, FW, et al. Long-term outcome of anti-neutrophil cytoplasm antibody-associated glomerulonephritis: evaluation of the international histological classification and other prognostic factors. Nephrol Dialysis Transplant 2015; 30: 1185–92.Google Scholar
Ford, SL, Polkinghorne, KR, Longano, A, et al. Histopathologic and clinical predictors of kidney outcomes in ANCA-associated vasculitis. Am J Kidney Dis 2014; 63(2): 227–35.Google Scholar
Falk, RJ, Jennette, JC. Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med 1988; 318(25): 1651–7.CrossRefGoogle ScholarPubMed
Savige, J, Davies, D, Falk, RJ, Jennette, JC, Wiik, A. Antineutrophil cytoplasmic antibodies and associated diseases: a review of the clinical and laboratory features. Kidney Int 2000; 57(3): 846–62.Google Scholar
Hauer, HA, Bajema, IM, van Houwelingen, HC, et al. Renal histology in ANCA-associated vasculitis: differences between diagnostic and serologic subgroups. Kidney Int 2002; 61(1): 80–9.Google Scholar
Samarkos, M, Loizou, S, Vaiopoulos, G, Davies, KA. The clinical spectrum of primary renal vasculitis. Semin Arthritis Rheum 2005; 35(2): 95111.Google Scholar
Woodworth, TG, Abuelo, JG, Austin, HA 3rd, Esparza, A. Severe glomerulonephritis with late emergence of classic Wegener’s granulomatosis. Report of 4 cases and review of the literature. Medicine (Baltimore) 1987; 66(3): 181–91.Google Scholar
Jennette, JC, Falk, RJ. Pathogenesis of antineutrophil cytoplasmic autoantibody-mediated disease. Nature Rev Rheumatol 2014; 10(8): 463–73.Google Scholar
Malenica, B, Rudolf, M, Kozmar, A. Antineutrophil cytoplasmic antibodies (ANCA): diagnostic utility and potential role in the pathogenesis of vasculitis. Acta Dermatovenerol Croat 2004; 12(4): 294313.Google Scholar
Pendergraft, WF, Niles, JL. Trojan horses: drug culprits associated with antineutrophil cytoplasmic autoantibody (ANCA) vasculitis. Curr Opin Rheumatol 2014; 26(1): 42–9.Google Scholar
Graf, J. Rheumatic manifestations of cocaine use. Curr Opin Rheumatol 2013; 25(1): 50–5.Google Scholar
Mahler, M, Bogdanos, DP, Pavlidis, P, et al. PR3-ANCA: a promising biomarker for ulcerative colitis with extensive disease. Clin Chim Acta 2013; 424: 267–73.Google Scholar
Arias-Loste, MT, Bonilla, G, Moraleja, I, et al. Presence of anti-proteinase 3 antineutrophil cytoplasmic antibodies (anti-PR3 ANCA) as serologic markers in inflammatory bowel disease. Clin Rev Allergy Immunol 2013; 45(1): 109–16.Google Scholar
Kain, R, Matsui, K, Exner, M, et al. A novel class of autoantigens of anti-neutrophil cytoplasmic antibodies in necrotizing and crescentic glomerulonephritis: the lysosomal membrane glycoprotein h-lamp-2 in neutrophil granulocytes and a related membrane protein in glomerular endothelial cells. J Exp Med 1995; 181(2): 585–97.Google Scholar
Kain, R, Tadema, H, McKinney, EF, et al. High prevalence of autoantibodies to hLAMP-2 in anti-neutrophil cytoplasmic antibody-associated vasculitis. J Am Soc Nephrol 2012; 23(3): 556–66.Google Scholar
Kain, R, Exner, M, Brandes, R, et al. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nature Med 2008; 14(10): 1088–96.Google Scholar
Roth, AJ, Brown, MC, Smith, RN, et al. Anti-LAMP-2 antibodies are not prevalent in patients with antineutrophil cytoplasmic autoantibody glomerulonephritis. J Am Soc Nephrol 2012; 23(3): 545–55.Google Scholar
Hendricks, AR, Harris, AA, Walker, PD, Larsen, CP. Renal medullary angiitis: a case series from a single institution. Human Pathol 2013; 44(4): 521–5.Google Scholar
Bonsib, SM, Goeken, JA, Fandel, T, Houghton, DC. Necrotizing medullary lesions in patients with ANCA-associated renal disease. Modern Pathol 1994; 7(2): 181–5.Google Scholar
Boils, CL, Nasr, SH, Walker, PD, Couser, WG, Larsen, CP. Update on endocarditis-associated glomerulonephritis. Kidney Int. 2015; 87: 1241–9.CrossRefGoogle ScholarPubMed
Mahr, A, Batteux, F, Tubiana, S, et al. Brief report: prevalence of antineutrophil cytoplasmic antibodies in infective endocarditis. Arthritis Rheumatol 2014; 66(6): 1672–7.Google Scholar
Uh, M, McCormick, IA, Kelsall, JT. Positive cytoplasmic antineutrophil cytoplasmic antigen with PR3 specificity glomerulonephritis in a patient with subacute bacterial endocarditis. J Rheumatol 2011; 38(7):1527–8.Google Scholar
Tiliakos, AM, Tiliakos, NA. Dual ANCA positivity in subacute bacterial endocarditis. J Clin Rheumatol 2008; 14(1):3840.Google Scholar
Chirinos, J, Corrales-Medina, V, Garcia, S, Lichtstein, D, Bisno, A, Chakko, S. Endocarditis associated with antineutrophil cytoplasmic antibodies: a case report and review of the literature. Clin Rheumatol 2007; 26: 590–5.Google Scholar
Hanf, W, Serre, JE, Salmon, JH, et al. Rapidly progressive ANCA positive glomerulonephritis as the presenting feature of infectious endocarditis. Rev Med Intern 2011; 32(12): e116–8.Google Scholar
Veerappan, I, Prabitha, EN, Abraham, A, Theodore, S, Abraham, G. Double ANCA-positive vasculitis in a patient with infective endocarditis. Indian J Nephrol 2012; 22(6): 469–72.Google Scholar
Marina, VP, Malhotra, D, Kaw, D. Hydralazine-induced ANCA vasculitis with pulmonary renal syndrome: a rare clinical presentation. Int Urol Nephrol 2012; 44(6): 1907–9.Google Scholar
Murakami, M, Shimane, K, Takahashi, H, Tomiyama, J, Nagashima, M. ANCA-associated vasculitis with dual ANCA positivity in coexistence with mixed connective tissue disease. Modern Rheumatol 2013; 23(1): 156–61.Google Scholar
Rosen, DR, Cologne, KG, Popek, SM, et al. Recurrent drug-induced ANCA vasculitis in a patient with Crohn’s colitis treated with infliximab: a potential contraindication to immunosuppressive therapy. Am Surgeon 2012; 78(12): 1406–8.CrossRefGoogle Scholar
Radic, M, Martinovic Kaliterna, D, Radic, J. Drug-induced vasculitis: a clinical and pathological review. Neth J Med 2012; 70(1): 12–7.Google Scholar
Arend, LJ, Nadasdy, T. Emerging therapy-related kidney disease. Arch Pathol Lab Med 2009; 133(2): 268–78.Google Scholar
Agarwal, G, Sultan, G, Werner, SL, Hura, C. Hydralazine induces myeloperoxidase and proteinase 3 anti-neutrophil cytoplasmic antibody vasculitis and leads to pulmonary renal syndrome. Case Rep Nephrol 2014; 2014: 868590. doi: 10. 1155/2014/868590.Google ScholarPubMed
Chiu, KC, Tsai, TC, Lin, WT, et al. Paraneoplastic polymyositis associated with crescentic glomerulonephritis. Ren Fail 2008; 30(9): 939–42.Google Scholar
Abe, H, Momose, S, Takeuchi, T. Micorscopic polyangiitis complicating double carcinoma of the stomach and duodenum: improvement after resection of these carcinomas. Rheumatol Int 2011; 31(1): 105–08.Google Scholar
Brodsky, SV, Nadasdy, T, Rovin, BH, et al. Warfarin-related nephropathy occurs in patients with and without chronic kidney disease and is associated with an increased mortality rate. Kidney Int 2011; 80(2): 181–9.Google Scholar
Jennette, JC, Xiao, H, Falk, RJ. Pathogenesis of vascular inflammation by anti-neutrophil cytoplasmic antibodies. J Am Soc Nephrol 2006; 17(5): 1235–42.CrossRefGoogle ScholarPubMed
Morgan, MD, Harper, L, Williams, J, Savage, C. Anti-neutrophil cytoplasm-associated glomerulonephritis. J Am Soc Nephrol 2006; 17(5): 1224–34.Google Scholar
Bajema, IM, Hagen, EC, de Heer, E, van der Woude, FJ, Bruijn, JA. Colocalization of ANCA-antigens and fibrinoid necrosis in ANCA-associated vasculitis. Kidney Int 2001; 60(5): 2025–30.Google Scholar
Abreu-Velez, AM, Smith, JG Jr., Howard, MS. Presence of neutrophil extracellular traps and antineutrophil cytoplasmic antibodies associated with vasculitides. N Am J Med Sci 2009; 1(6): 309–13.Google Scholar
Kambas, K, Chrysanthopoulou, A, Vassilopoulos, D, et al. Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease. Ann Rheum Dis 2014; 73(10): 1854–63.Google Scholar
Kessenbrock, K, Krumbholz, M, Schonermarck, U, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nature Med 2009; 15(6): 623–5.Google Scholar
Jennette, JC, Falk, RJ. New insight into the pathogenesis of vasculitis associated with antineutrophil cytoplasmic autoantibodies. Curr Opin Rheumatol 2008; 20(1): 5560.Google Scholar
Langford, CA, Balow, JE. New insights into the immunopathogenesis and treatment of small vessel vasculitis of the kidney. Curr Opin Nephrol Hypertens 2003; 12(3): 267–72.Google Scholar
Zhao, L, David, MZ, Hyjek, E, Chang, A, Meehan, SM. M2 macrophage infiltrates in the early stages of ANCA-associated pauci-immune necrotizing GN. Clin J Am Soc Nephrol 2015; 10(1): 5462.Google Scholar
Jennette, JC, Falk, RJ. The rise and fall of horror autotoxicus and forbidden clones. Kidney Int 2010; 78(6): 533–5.Google Scholar
Cui, Z, Zhao, MH, Segelmark, M, Hellmark, T. Natural autoantibodies to myeloperoxidase, proteinase 3, and the glomerular basement membrane are present in normal individuals. Kidney Int 2010; 78(6): 590–7.Google Scholar
Olson, SW, Arbogast, CB, Baker, TP, et al. Asymptomatic autoantibodies associate with future anti-glomerular basement membrane disease. J Am Soc Nephrol 2011; 22(10): 1946–52.Google Scholar
Roth, AJ, Ooi, JD, Hess, JJ, et al. Epitope specificity determines pathogenicity and detectability in ANCA-associated vasculitis. J Clin Invest 2013; 123(4): 1773–83.Google Scholar
Xu, PC, Cui, Z, Chen, M, Hellmark, T, Zhao, MH. Comparison of characteristics of natural autoantibodies against myeloperoxidase and anti-myeloperoxidase autoantibodies from patients with microscopic polyangiitis. Rheumatology 2011; 50(7): 1236–43.Google Scholar
Jennette, JC, Falk, RJ. B cell-mediated pathogenesis of ANCA-mediated vasculitis. Semin Immunopathol 2014; 36(3): 327–38.Google Scholar
Lionaki, S, Jennette, JC, Falk, RJ. Anti-neutrophil cytoplasmic (ANCA) and anti-glomerular basement membrane (GBM) autoantibodies in necrotizing and crescentic glomerulonephritis. Semin Immunopathol 2007; 29(4): 459–74.Google Scholar
Little, MA, Pusey, CD. Glomerulonephritis due to antineutrophil cytoplasm antibody-associated vasculitis: an update on approaches to management. Nephrology (Carlton) 2005; 10(4): 368–76.Google Scholar
Feldmann, M, Pusey, CD. Is there a role for TNF-alpha in anti-neutrophil cytoplasmic antibody-associated vasculitis? Lessons from other chronic inflammatory diseases. J Am Soc Nephrol 2006; 17(5): 1243–52.Google Scholar
Sanders, JS, Stassen, PM, van Rossum, AP, Kallenberg, CG, Stegeman, CA. Risk factors for relapse in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis: tools for treatment decisions? Clin Exp Rheumatol 2004; 22(6 Suppl 36): S94101.Google ScholarPubMed
Lee, T, Gasim, A, Derebail, VK, et al. Predictors of treatment outcomes in ANCA-associated vasculitis with severe kidney failure. Clin J Am Soc Nephrol 2014; 9(5): 905–13.Google Scholar
Hauer, HA, Bajema, IM, Van Houwelingen, HC, et al. Determinants of outcome in ANCA-associated glomerulonephritis: a prospective clinico-histopathological analysis of 96 patients. Kidney Int 2002; 62(5): 1732–42.Google Scholar
de Lind van Wijngaarden, RA, Hauer, HA, Wolterbeek, R, et al. Chances of renal recovery for dialysis-dependent ANCA-associated glomerulonephritis. J Am Soc Nephrol 2007; 18(7): 2189–97.Google Scholar
Alexopoulos, E, Gionanlis, L, Papayianni, E, et al. Predictors of outcome in idiopathic rapidly progressive glomerulonephritis (IRPGN). BMC Nephrol 2006; 7: 16.Google Scholar
Chen, M, Yu, F, Wang, SX, et al. Antineutrophil cytoplasmic autoantibody-negative pauci-immune crescentic glomerulonephritis. J Am Soc Nephrol 2007; 18(2): 599605.Google Scholar
Jayne, DR, Gaskin, G, Rasmussen, N, et al. Randomized trial of plasma exchange or high-dosage methylprednisolone as adjunctive therapy for severe renal vasculitis. J Am Soc Nephrol 2007; 18(7): 2180–8.Google Scholar
Goodpasture, WE. The significance of certain pulmonary lesions in relation to the etiology of influenzae. Am J Med Sci 1919; 158: 863–70.Google Scholar
Martinez, JS, Kohler, PF. Variant “Goodpasture’s syndrome”? The need for immunologic criteria in rapidly progressive glomerulonephritis and hemorrhagic pneumonitis. Ann Intern Med 1971; 75(1): 6776.Google Scholar
Savage, CO, Pusey, CD, Bowman, C, Rees, AJ, Lockwood, CM. Antiglomerular basement membrane antibody mediated disease in the British Isles 1980–4. Br Med J (Clin Res Ed) 1986; 292(6516): 301–4.Google Scholar
Saraf, P, Berger, HW, Thung, SN. Goodpasture’s syndrome with no overt renal disease. Mt Sinai J Med 1978; 45(4): 451–4.Google Scholar
Daly, C, Conlon, PJ, Medwar, W, Walshe, JJ. Characteristics and outcome of anti-glomerular basement membrane disease: a single-center experience. Ren Fail 1996; 18(1): 105–12.Google Scholar
Qunibi, WY, Taylor, K, Knight, TF, et al. Nephrotic syndrome in anti-GBM antibody mediated glomerulonephritis. South Med J 1979; 72(11): 1396–8.Google Scholar
Knoll, G, Rabin, E, Burns, BF. Antiglomerular basement membrane antibody-mediated nephritis with normal pulmonary and renal function. A case report and review of the literature. Am J Nephrol 1993; 13(6): 494–6.CrossRefGoogle ScholarPubMed
Wu, MJ, Rajaram, R, Shelp, WD, Beirne, GJ, Burkholder, PM. Vasculitis in Goodpasture’s syndrome. Arch Pathol Lab Med 1980; 104(6): 300–2.Google Scholar
Kurki, P, Helve, T, von Bonsdorff, M, et al. Transformation of membranous glomerulonephritis into crescentic glomerulonephritis with glomerular basement membrane antibodies. Serial determinations of anti-GBM before the transformation. Nephron 1984; 38(2): 134–7.Google Scholar
Pettersson, E, Tornroth, T, Miettinen, A. Simultaneous anti-glomerular basement membrane and membranous glomerulonephritis: case report and literature review. Clin Immunol Immunopathol 1984; 31(2): 171–80.CrossRefGoogle ScholarPubMed
Jennette, JC, Lamanna, RW, Burnette, JP, Wilkman, AS, Iskander, SS. Concurrent antiglomerular basement membrane antibody and immune complex mediated glomerulonephritis. Am J Clin Pathol 1982; 78(3): 381–6.Google Scholar
Coley, SM, Shirazian, S, Radhakrishnan, J, D’Agati, VD. Monoclonal IgG1ĸ anti-glomerular basement membrane disease: a case report. Am J Kidney Dis 2015; 65(2): 322–6.Google Scholar
Kalluri, R, Wilson, CB, Weber, M, et al. Identification of the alph 3 chain of type IV collagen as the common autoantigen in antibasement membrane disease and Goodpasture syndrome. J Am Soc Nephrol 1995; 6(4): 1178–85.Google Scholar
Leatherman, JW, Sibley, RK, Davies, SF. Diffuse intrapulmonary hemorrhage and glomerulonephritis unrelated to anti-glomerular basement membrane antibody. Am J Med 1982; 72(3): 401–10.Google Scholar
Lerner, RA, Glassock, RJ, Dixon, FJ. The role of anti-glomerular basement membrane antibody in the pathogenesis of human glomerulonephritis. J Exp Med 1967; 126(6): 9891004.Google Scholar
Borza, DB. Autoepitopes and alloepitopes of type IV collagen: role in the molecular pathogenesis of anti-GBM antibody glomerulonephritis. Nephron Exp Nephrol 2007; 106(2): e3743.Google Scholar
Borza, DB, Bondar, O, Colon, S, et al. Goodpasture autoantibodies unmask cryptic epitopes by selectively dissociating autoantigen complexes lacking structural reinforcement: novel mechanisms for immune privilege and autoimmune pathogenesis. J Biol Chem 2005; 280(29): 27147–54.Google Scholar
Kalluri, R. Goodpasture syndrome. Kidney Int 1999; 55(3):1120–2.Google Scholar
Silvarino, R, Noboa, O, Cervera, R. Anti-glomerular basement membrane antibodies. Review. Isr M Assoc J 2014; 16: 727–32.Google Scholar
Bolton, WK, Innes, DJ Jr, Sturgill, BC, Kaiser, DL. T-cells and macrophages in rapidly progressive glomerulonephritis: clinicopathologic correlations. Kidney Int 1987; 32(6): 869–76.Google Scholar
Reynolds, J, Tam, FW, Chandraker, A, et al. CD28-B7 blockade prevents the development of experimental autoimmune glomerulonephritis. J Clin Invest 2000; 105(5): 643–51.Google Scholar
Huey, B, McCormick, K, Capper, J, et al. Associations of HLA-DR and HLA-DQ types with anti-GBM nephritis by sequence-specific oligonucleotide probe hybridization. Kidney Int 1993; 44(2): 307–12.Google Scholar
Cui, Z, Wang, HY, Zhao, MH, Natural autoantibodies against glomerular basement membranes exist in normal human sera. Kidney Int 2006; 69(5): 894–9.Google Scholar
Yang, R, Cui, Z, Hellmark, T, et al. Natural anti-GBM antibodies from normal human sera recognize alpha3(IV) NC1 restrictively and recognize the same epitopes as anti-GBM antibodies from patients with anti-GBM disease. Clin Immunol 2007; 124(2):207–12.Google Scholar
Zhao, J, Yan, Y, Cui, Z, Yang, R, Zhao, MH. The immunoglobulin G subclass distribution of anti-GBM autoantibodies against rHalpha3(IV) NC1 is associated with disease severity. Human Immunol 2009; 70(6):425–9.Google Scholar
Cui, Z, Zhao, MH, Singh, AK, Wang, HY. Antiglomerular basement membrane disease with normal renal function. Kidney Int 2007; 72(11): 1403–8.Google Scholar
Pedchenko, V, Bondar, O, Fogo, AB, et al. Molecular architecture of the Goodpasture autoantigen in anti-GBM nephritis. N Engl J Med 2010; 363(4): 343–54.Google Scholar
Reynold, J, Norgan, VA, Bhanbra, U, et al. Anti-CD8 monoclonal antibody therapy is effective in prevention and treatment of experimental autoimmune glomerulonephritis. J Am Soc Nephrol 2002; 13(2): 359–69.Google Scholar
Salama, AD, Chaudhry, AN, Ryan, JJ, et al. In Goodpasture’s disease, CD4(+) T cells escape thymic deletion and are reactive with the autoantigen alpha 3(IV) NC1. J Am Soc Nephrol 2001; 12(9): 1908–15.Google Scholar
Salama, AD, Levy, JB, Lightstone, L, Pusey, CD. Goodpasture’s disease. Lancet 2001; 358(9285): 917–20.Google Scholar
Levy, JB, Turner, AN, Rees, AJ, Pusey, CD. Long-term outcome of anti-glomerular basement membrane antibody disease treated with plasma exchange and immunosuppression. Ann Intern Med 2001; 134(11): 1033–42.Google Scholar
Jones, DA, Jennette, JC, Falk, RJ. Goodpasture’s syndrome revisited. A new perspective on glomerulonephritis and alveolar hemorrhage. N C Med J 1990; 51(8): 411–5.Google Scholar
Lee, RW, D’Cruz, DP. Novel therapies for anti-neutrophil cytoplasmic antibody-associated vasculitis. Drugs 2008; 68(6): 747–70.Google Scholar
Alpers, CE, Rennke, HG, Hopper, J, Biava, CG. Fibrillary glomerulonephritis – an entity with unusual immunofluorescence features. Kidney Int 1987; 31(3): 781–9.Google Scholar
Couser, WG. Rapidly progressive glomerulonephritis – classification, pathogenetic mechanisms, and therapy. Am J Kidney Dis 1988; 11(6): 449–64.Google Scholar
Srivastava, RN, Moudgil, A, Bagga, A, et al. Crescentic glomerulonephritis in children: a review of 43 cases. Am J Nephrol 1992; 12(3): 155–61.Google Scholar
Jindal, KK. Management of idiopathic crescentic and diffuse proliferative glomerulonephritis: evidence-based recommendations. Kidney Int Suppl 1999; 70: S3340.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×