Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T01:42:41.040Z Has data issue: false hasContentIssue false

17 - Solute and sedimentary fluxes on King George Island

from Part IV - Solute and sedimentary fluxes in sub-Antarctic and Antarctic environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, S. L. (2001). Weathering and major-ion chemistry in the Herbert, Eagle and Mendenhall glacial meltwaters. 14th Keck Symposium Volume. NASA Goddard Space Flight Center. Online: http://keckgeology.org/14thsymposiumvolume, accessed 27 February 2014.Google Scholar
Battke, Z., Marsz, A. A., and Pudełko, R. (2001). The processes of deglaciation in the region SSSI No. 8 and their climatic and hydrological conditions (Admiralty Bay, King George Islands, South Shetlands). Problemy Klimatologii Polarnej, 11, 121135.Google Scholar
Borysiak, J., Grześ, M., Pulina, M., and Szpikowska, G. (2015). Hydrogeochemical and biogeochemical processes in Kaffiøyra river catchments (Spitsbergen, Norway). Quaestiones Geographicae, 34(1), 111124. doi: 10.1515/quageo-2015-0010.CrossRefGoogle Scholar
Braun, M. (2001). Ablation on the ice cap of King George Island (Antarctica)–an approach from field measurements, modelling and remote sensing. Ph.D. thesis, Albert–Ludwigs–Universität Freiburg, 165 pp.Google Scholar
Braun, M., and Goßmann, H. (2002). Glacial changes in the area of Admiralty Bay and Potter Cove, King George Island, Antarctica. In Beyer, M. and Boelter, M., eds., Geoecology of terrestrial Antarctic oases. Ecological Studies, 154, 75–89. Heidelberg: Springer-Verlag.Google Scholar
Braun, M., Saurer, H., Vogt, S., Simoes, J. C., and Grossmann, H. (2001). The influence of large-scale atmospheric circulation on the surface energy balance of the King George Island ice cap. International Journal of Climatology, 21, 2136.CrossRefGoogle Scholar
Carrasco, J. F., (2013). Decadal changes in the near-surface air temperature in the western side of the Antarctic Peninsula. Atmospheric and Climate Sciences, 3, 275281. Online: http://dx.doi.org/10.4236/acs.2013.33029.CrossRefGoogle Scholar
Chapman, W. L., and Walsh, J. E. (2007). A synthesis of Antarctic temperatures. Journal of Climate, 20, 40964117.CrossRefGoogle Scholar
Chmiel, S., Bartoszewski, S., and Siwek, K. (2011). Chemical denudation rates in the Wydrzyca catchment (Bellsund, Svalbard). Annales Universitatis Mariae Curie-Skłodowska, 66(1), 115128.Google Scholar
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A., Braithwaite, R. J., Jansson, P., Kaser, G., Möller, M., Nicholson, L., and Zemp, M. (2011). Glossary of glacier mass balance and related terms. IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris: UNESCO.Google Scholar
Domack, E., Leventer, A., Burnett, A., Bindschadler, R., Convey, P., and Kirby, M., eds. (2003). Antarctic Peninsula Climate Variability. Antarctic Research Series 79. Washington: American Geophys. Union, 260 pp.Google Scholar
Doran, P. T., Proscu, J. C., Lyons, W. B., Walsh, J. E, Fountain, A. G., McKnight, D. M., Moorhead, D. L., Virginia, R. A., Wall, D. H., Clow, G. D., Fristen, C. H., McKay, C. P., and Parsons, A. N. (2002). Antarctic climate cooling and terrestrial ecosystem response, Nature, 415, 517520.CrossRefGoogle ScholarPubMed
Embleton, C., and Thornes, J., eds. (1979). Process in Geomorphology. London: Hodder & Stoughton Educational.Google Scholar
Ferron, F. A., Simões, J. C., Aquino, F. E., and Setzer, A. W. (2004). Air temperature time series for King George Island, Antarctica. Pesquisa Antártica Brasileira, 4, 155169.CrossRefGoogle Scholar
Finlayson, B. (1979). Electrical conductivity: a useful technique in teaching geomorphology. Journal of Geography in Higher Education, 3(2), 6887.CrossRefGoogle Scholar
Francelino, M. R., Schaefer, C. E. G. R., and Fernandes Filho, E. I. (2003). Arctowski region map. Non-conventional aerial photographs.Google Scholar
Gurnell, A. M. (1987). Suspended sediment. In Gurnell, A. M. and Clark, M. J., eds., Glaciofluvial Sediment Transfer: An Alpine Perspective. Chichester: Wiley, 305354.Google Scholar
Hodson, A. (1999). Glacio-fluvial sediment and solute transfer in high Arctic basins: examples from Svalbard. Glacial Geology and Geomorphology, 10. Online: ggg.qub.ac.uk/ggg/papers/full/1999/rp101999/rp10.html.Google Scholar
Hodson, A., Gurnell, A., Tranter, M., Bogen, J., Hagen, J. O., and Clarke, M. (1998). Suspended sediment yield and transfer processes in a small High Arctic glacier basin, Svalbard. Hydrol. Proc., 12, 7386.3.0.CO;2-S>CrossRefGoogle Scholar
Hodson, A., Tranter, M., and Vatne, G. (2000). Contemporary rates of chemical denudation and atmospheric CO2 sequestration in glacier basins: an Arctic perspective. Earth Surface Processes and Landforms, 25, 14471471.3.0.CO;2-9>CrossRefGoogle Scholar
Jacobs, S. S., and Comiso, J. C. (1997). Climate variability in the Amundsen and Bellingshausen Seas. Journal of Climate, 10, 697709.2.0.CO;2>CrossRefGoogle Scholar
Kejna, M. (1999). Air temperature on King George Island (South Shetland Islands, Antarctica). Polish Polar Research, 20, 183201.Google Scholar
Kejna, M. (2003). Trends of air temperature of the Antarctic during the period 1958–2000, Polish Polar Research, 24(2), 99-126.Google Scholar
Kejna, M. (2008a). Spatial distribution and variability of air temperature on Antarctica during the second part of the 20th century. Toruń: Wydawnictwo Uniwersytetu Mikołaja Kopernika, 272 pp.Google Scholar
Kejna, M. (2008b). Topoclimatic conditions in the vicinity of the H. Arctowski Station (King George Island, Antarctica) during the summer season of 2006/2007. Polish Polar Research, 29(2), 95-116.Google Scholar
Kejna, M., Araźny, A., and Sobota, I. (2013). The climatic change on King George Island (South Shetland Islands, Antarctica) in the years of 1948–2011, Polish Polar Research, 2, 213235.CrossRefGoogle Scholar
Kejna, M., Láska, K., and Caputa, Z. (1998). Recession of Ecology Glacier (King George Island) in the period 1961–1996. Warszawa: Polish Polar Studies, 121128.Google Scholar
Kostrzewski, A., Kaniecki, A., Kapuściński, J., Klimczak, R., Stach, A., and Zwoliński, Zb. (1989). The dynamics and rate of denudation of glaciated and non-glaciated catchments, central Spitsbergen. Polish Polar Research, 10(3), 317367.Google Scholar
Kostrzewski, A., Mazurek, M, and Zwoliński, Zb. (1994). Dynamika transportu fluwialnego górnej Parsęty jako odbicie funkcjonowania systemu zlewni. Poznań: Stowarzyszenie Geomorfologów Polskich, 165 pp.Google Scholar
Kostrzewski, A., Rachlewicz, G., and Zwoliński, Zb. (1998). Geomorphological map of the western coast of Admiralty Bay, King George Island. In Repelewska-Pękalowa, J., ed., Relief, Quaternary Paleogeography and Changes of the Polar Environment. Lublin: II. IV Zjazd Geom. Pol., UMCS, 7177.Google Scholar
Kostrzewski, A., Rachlewicz, G., and Zwoliński, Zb. (2001). Contemporary sedimentary covers of western coast of Admiralty Bay, King George Island, South Shetlands. In Kostrzewski, A., ed., Geneza, litologia i stratygrafia utworów czwartorzędowych, III. Poznań: Wyd. UAM, Ser. Geografia, 64: 219235.Google Scholar
Kostrzewski, A., Rachlewicz, G., and Zwoliński, Zb. (2003). The relief of the Western Coast of Admiralty Bay, King George Island, South Shetlands. Quaestiones Geographicae, 22, 4358.Google Scholar
Kostrzewski, A., and Zwoliński, Zb. (1985). Chemical denudation rate in the upper Parsęta catchment, Western Pomerania: research methods and preliminary results. Quaestiones Geographicae, Spec. Iss., 1, 121138.Google Scholar
Kostrzewski, A., and Zwoliński, Zb. (1992). Udział denudacji chemicznej i mechanicznej we współczsnym systemie geomorficznym górnej Parsęty (Pomorze Zachodnie). In A. Kotarba, ed., System denudacyjny Polski. Pr. Geogr. IGiPZ PAN, 155: 11–45.Google Scholar
Krawczyk, W. E., and Bartoszewski, S. A. (2008). Crustal solute fluxes and transient carbon dioxide drawdown in the Scottbreen Basin, Svalbard in 2002. Journal of Hydrology, 362, 206219.CrossRefGoogle Scholar
Lagun, V. E., Ivanov, N. E., and Jagovkina, S. V. (2006). About the warming in the region of the Antarctic Peninsula. Problemy Klimatologii Polarnej, 16, 2245 (in Russian).Google Scholar
Macioszczyk, A. (1987). Hydrogeochemia. Warszawa: Wydawnictwa Geologiczne, 475 pp.Google Scholar
Marsz, A. A., and Styszyńska, A. (2000). Main features of climate of Henryk Arctowski Polish Polar Station (Western Antarctica, South Shetlands, King George Island). Gdynia: Wyd. WSM, 264 pp.Google Scholar
Martianov, V., and Rakusa-Suszczewski, S., (1990). Ten years of climate observations at the Arctowski and Bellingshausen Stations (King George Island, South Shetlands, Antarctic). In Breymeyer, A., ed., Global Change Regional Research Centres, Seminar Papers and IGBP WG2 Report. IGSO PAS: 8087.Google Scholar
Mazurek, M. (2000). Zmienność transportu materiałurozpuszczonego w zlewni Kłudy jako przejaw współczesnych procesów denudacji chemicznej (Pomorze Zachodnie). Poznań: Wyd. UAM, 125 pp.Google Scholar
Meredith, M. P., and King, J. C. (2005). Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters, 32, L19604, doi:10.1029/2005GL024042CrossRefGoogle Scholar
Monaghan, A. J., Bromwich, D. H., Chapman, W., and Comiso, J. C. (2008). Recent variability and trends of Antarctic near-surface temperature. J. Geophys. Res., 113, D04105, doi: 10.1029/2007JD009094Google Scholar
Murphy, E. J., Clarke, A., Symon, C., and Priddle, J. (1995). Temporal variation in Antarctic sea-ice: analysis of a long term fast-ice record from the South Orkney Islands. Deep-Sea Res., 42, 118.CrossRefGoogle Scholar
Olech, M. A., and Massalski, A. (2001). Plant colonization and community development on the Sphinx Glacier forefield. Folia Facultatis Scientiarium Naturalium Universitatis Masarykianae Brunensis, Geographia, 25, 111119.Google Scholar
Østrem, G., and Brugman, M. (1991). Glacier mass-balance measurements: a manual for field and office work. Saskatoon, Saskatchewan: National Hydrology Research Institute, Science Report No. 4, 224 pp.Google Scholar
Parkinson, C. L., and Cavalieri, D. J. (2012). Antarctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 871880, doi:10.5194/tc-6–871-2012CrossRefGoogle Scholar
Project KGIS. (2005). SCAR KGIS, The King George Island GIS Project. Online: www.kgis.scar.org.Google Scholar
Pudełko, R. 2003). Topographic map of the SSSI No. 8, King George Island, West Antarctica. Polish Polar Research, 24(1), 5260.Google Scholar
Pudełko, R. (2007). Othophotomap. Western Shore of Admiralty Bay. 1:10000, Department of Antarctic Biology Polish Academy of Science.Google Scholar
Pulina, M. (1974). Denudacja chemiczna na obszarach krasu węglanowego. Wrocław: Zakład Narodowy im. Ossolińskich, 159 pp.Google Scholar
Rachlewicz, G. (1997). Mid-winter thawing in the vicinity of Arctowski Station, King George Island. Polish Polar Research, 18(1), 15–24.Google Scholar
Rachlewicz, G. (2001). Wybrane procesy glacjalne w warunkach morskiego klimatu Antarktyki na przykładzie Kopuły Lodowej Warszawy, Wyspa Króla Jerzego (Szetlandy Południowe). In Karczewski, A. and Zwoliński, Zb., eds., Funkcjonowanie geoekosystemów w zróżnicowanych warunkach morfoklimatycznych. Monitoring, ochrona, edukacja. Poznań: Stowarzyszenie Geomorfologów Polskich, Bogucki Wyd. Nauk., 443452.Google Scholar
Rachlewicz, G., Szczuciński, W., and Ewertowski, M. (2007). Post- “Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen, Svalbard. Polish Polar Research. 28(3): 159186.Google Scholar
Rakusa-Suszczewski, S. (1999). Ekosystem morskiej Antarktyki. Zmiany i zmienność. Warszawa: PWN Wyd. Nauk., 152 pp.Google Scholar
Rakusa-Suszczewski, S. (2003). Functioning of the geoecosystem for the west side of Admiralty Bay (King George Island, Antarctica): outline of research at Arctowski Station. Ocean and Polar Research, 25(4), 653662.CrossRefGoogle Scholar
Rakusa-Suszczewski, S., and Sierakowski, K. (1993). Pinnipeds in Admiralty Bay, King George Island, South Shetlands (1988–1992). Polish Polar Research, 14, 439453.Google Scholar
Rodriquez, R., Llasat, C. M., and Rakusa-Suszczewski, S. (1996). Analysis of the mean and extreme temperature series of the Arctowski Antarctic Base. Problemy Klimatologii Polarnej, 6, 191212.Google Scholar
Rückamp, M., Blindow, N., Suckro, S., Braun, M., and Humbert, A. (2010). Dynamics of the ice cap on King George Island, Antarctica: field measurements and numerical simulations. Annals of Glaciology, 51, 8090.CrossRefGoogle Scholar
Rückamp, M., Braun, M., Suckro, S., and Blindow, N. (2011). Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Global and Planetary Change, 79, 99-109.CrossRefGoogle Scholar
Sharp, M., Tranter, M., Brown, G., and Skidmore, M. (1995). Rates of chemical denudation and CO2 drawdown in a glacier-covered alpine catchment. Geology, 23, 6164.2.3.CO;2>CrossRefGoogle Scholar
Sierakowski, K. (1991). Birds and mammals in the region of SSSI No. 8 in the season 1988/89 (South Shetlands, King George Island, Admiralty Bay). Polish Polar Research, 12, 2554.Google Scholar
Simões, J. C., Bremer, U. F., Aquino, F. E., and Ferron, F. A. (1999). Morphology and variations of glacial drainage basins in the King George Island ice field. Antarctica Ann. Glac., 29, 220224.CrossRefGoogle Scholar
Smith, R. C., Stammerjohn, S., and Baker, K. S. (1996). Surface air temperature variations in the western Antarctic Peninsula region. In Ross, R. M., Quetin, L. B., and Hofmann, E. E., eds., Foundations for Ecological Research West of the Antarctic Peninsula. AGU Antar. Res. Ser., 70: 105121.CrossRefGoogle Scholar
Sobota, I. (2013). Recent changes of cryosphere of north-western Spitsbergen based on Kaffiøyra region. Toruń: Wydawnictwo UMK. 449 pp.Google Scholar
Sobota, I., Kejna, M., and Araźny, A. (2015). Short-term mass changes and retreat of the Ecology and Sphinx glacier system, King George Island, Antarctic Peninsula. Antarctic Science, 27(5), 500510.CrossRefGoogle Scholar
Sobota, I., and Lankauf, K. R. (2010). Recession of Kaffiøyra Region glaciers, Oscar II Land, Svalbard. Bulletin of Geography, Physical Geography Series, 3, 2745.CrossRefGoogle Scholar
Stach, A. (1992). Pomiar przepływu wody metoda konduktometryczna w profilach nieustabilizowanych małych cieków nizinnych. In Kostrzewski, A. and Pulina, M., eds., Metody hydrochemiczne w geomorfologii dynamicznej. Pr. Nauk. UŚl., 1254: 84-105.Google Scholar
Stastna, V. (2010). Spatio-temporal changes in surface air temperature in the region of the northern Antarctic Peninsula and South Shetland Islands during 1950–2003, Polar Science, 4, 1833.CrossRefGoogle Scholar
Steig, E. J, Schneider, D. P., Rutherford, S. D., Mann, M. E., Comiso, J. C. and Shindell, D. T. (2009). Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457(22).CrossRefGoogle ScholarPubMed
Stumm, W., and Morgan, J. (1996). Aquatic chemistry, 3rd ed. New York: John Wiley & Sons.Google Scholar
Szpikowski, J., Szpikowska, G., Zwoliński, Zb., and Kostrzewski, A. (2014a). Magnitude of fluvial transport and rate of denudation in a non-glacierised catchment in a polar zone, Central Spitsbergen. Geografiska Annaler: Series A, Physical Geography, 96, 447464. doi:10.1111/geoa.12070.Google Scholar
Szpikowski, J., Szpikowska, G., Zwoliński, Zb., Rachlewicz, G., Kostrzewski, A., Marciniak, M., and Dragon, K. (2014b). Character and rate of denudation in a High Arctic glacierized catchment (Ebbaelva, Central Spitsbergen). Geomorphology, 218, 5262. DOI 10.1016/j.geomorph.2014.01.012.CrossRefGoogle Scholar
Turner, J., Colwell, S. R., and Harangozo, S. (1997). Variability of precipitation over the coastal western Antarctic Peninsula from synoptic observations. Journal of Geophysical Research, 102, D12: 1399914007.CrossRefGoogle Scholar
van den Broeke, M. R. (2000). On the interpretation of Antarctic temperature trends. Journal of Climate, 13(21), 38853889.2.0.CO;2>CrossRefGoogle Scholar
Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney, R., Hodgson, D. A., King, J. C., Pudsey, C. J., and Turner, J. (2003). Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change 60, 243274, DOI: 10.1023/A:1026021217991.CrossRefGoogle Scholar
Wadham, J. L., Hodson, A. J., Tranter, M., and Dowdeswell, J. A. (1997). The rate of chemical weathering beneath a quiescent, surge-type, polythermal-based glacier, southern Spitsbergen, Svalbard. Annals of Glaciology, 24, 2731.CrossRefGoogle Scholar
Zwoliński, Zb. (1989). Geomorficzne dostosowywanie się koryta Parsęty do aktualnego reżimu rzecznego (Geomorphic adjustment of the Parsęta channel to the present-day river regime). Dokum. Geogr., 3/4, 144 pp.Google Scholar
Zwoliński, Zb. (2007a). The mobility of mineral master in paraglacial areas, King George Island, Western Antarctica. Poznań: Wydawnictwo Naukowe UAM, Ser. Geografia, 74, 266 pp.Google Scholar
Zwoliński, Zb. (2007b). Hydrological polar monitoring – methodical proposition. Monitoring Środowiska Przyrodniczego, 8, 2939.Google Scholar
Zwoliński, Zb., Szpikowski, J., Wiśniewska, K. (2012). Provenance of surface waters on the western coast of Admiralty Bay, King George Island, Antarctica. In: Beylich, A. A., Zwoliński, Zb. (eds.), Hydrogeomorphological processes in catchment geoecosystems. Zeitschrift für Geomorphologie, 56(SI 1), 123141, DOI: 10.1127/0372-8854/2012/S-00076.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×