Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T23:58:10.968Z Has data issue: false hasContentIssue false

22 - Suspended sediment dynamics in the proglacial zone of the rapidly retreating Castle Creek Glacier, British Columbia, Canada

from Part V - Solute and sedimentary fluxes in alpine/mountain environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, S. P., Drever, J. I., Frost, C. D., and Holden, P. (2000). Chemical weathering in the foreland of a retreating glacier. Geochimica et Cosmochimica Acta, 64(7), 11731189.CrossRefGoogle Scholar
Arnell, N. W., and Gosling, S. N. (2013). The impacts of climate change on river flow regimes at the global scale. Journal of Hydrology, 486, 351364.CrossRefGoogle Scholar
Beedle, M. J., Menounos, B., Luckman, B. H., and Wheate, R. (2009). Annual push moraines as climate proxy. Geophysical Research Letters, 36, L20501, DOI:10.1029/2009GL039533.CrossRefGoogle Scholar
Bolch, T., Menounos, B., and Wheate, R. (2010). Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sensing of Environment, 114, 127137.CrossRefGoogle Scholar
BCMOE. (2002). Environmental trends in British Columbia: 2007. Victoria, BC: British Columbia Ministry of Environment. State of Environment Reporting. URL: www.env.gov.bc.ca/soe/Google Scholar
BCMOE. (2007). Environmental trends in British Columbia: 2007. Victoria, BC: British Columbia Ministry of Environment. State of Environment Reporting. URL: www.env.gov.bc.ca/soe/et07/.Google Scholar
Casassa, G., Lopez, P., Pouyauard, B., and Escobar, F. (2009). Detection of changes in glacial runoff in alpine basins: examples from North America, the Alps, central Asia and the Andes. Hydrological Processes, 23, 3141.CrossRefGoogle Scholar
Church, M., and Slaymaker, O. (1989). Disequilibrium of Holocene sediment yield in glaciated British Columbia. Nature, 337, 452454.CrossRefGoogle Scholar
Collins, D. N. (1979). Sediment concentration in meltwaters as an indicator of erosion processes beneath an Alpine glacier. Journal of Glaciology, 23, 247259.CrossRefGoogle Scholar
Demmer, D. L., and Mooers, H. D. (2005). Lewis Glacier, South Sister Mountain, Oregon: Farewell Old Friend? Paper and poster presented to Geological Society of America Salt Lake City Meeting, 16–19 October, 2005.Google Scholar
Déry, S. J., and Wood, E. F. (2005). Decreasing river discharge in northern Canada. Geophysical Research Letters, 32, L10401. doi: 10.1029/2005GL022845.CrossRefGoogle Scholar
Déry, S. J., Stahl, K., Moore, R. D., Whitfield, P. H., Menounos, B., and Burford, J. E. (2009). Detection of runoff timing changes in pluvial, nival and glacial rivers of western Canada. Water Resources Research, 45, W04426, doi:10.1029/2008WR006975.Google Scholar
Déry, S. J., Clifton, A., MacLeod, S., and Beedle, M. J. (2010). Blowing snow fluxes in the Cariboo Mountains of British Columbia, Canada. Arctic, Antarctic and Alpine Research, 42(2), 188197.CrossRefGoogle Scholar
Diodato, N., Støren, E. W., Bellocchi, G., and Nesje, A. (2013). Modelling sediment load in a glacial meltwater stream in western Norway. Journal of Hydrology, 486, 343350.CrossRefGoogle Scholar
Fausto, R. S., Mernild, S. H., Hasholt, B., Ahlstrøm, A. P., and Knudsen, N. T. (2012). Modeling suspended sediment concentration and transport, Mittivakkat Glacier, Southeast Greenland. Arctic, Antarctic, and Alpine Research, 44(3), 306318.CrossRefGoogle Scholar
FBC. (2007). Fraser Basin Council. http://www.fraserbasin.bc.caGoogle Scholar
Geilhausen, M., Morche, D., Otto, J. C., and Schrott, L. (2013). Sediment discharge from the proglacial zone of a retreating Alpine glacier. Zeitschrift für Geomorphologie, Supplementary Issues, 57(2), 2953.CrossRefGoogle Scholar
Gurnell, A. M., Clark, M. J., Hill, C. T., and Greenhalgh, J. (1992). Reliability and representativeness of a suspended sediment concentration monitoring programme for a remote alpine proglacial river. In Bogen, J., Walling, D. E., and Day, T., eds., Erosion and Sediment Transport Monitoring in River Basins, Proceedings of the Oslo Symposium 24–28 August 1992, International Association of Hydrological Sciences Publication, 210, 191–200.Google Scholar
Hasholt, B., Walling, D. E., and Owens, P. N. (2000). Sedimentation in arctic proglacial lakes: Mittivakkat Glacier, South-east Greenland. Hydrological Processes, 14, 679699.3.0.CO;2-E>CrossRefGoogle Scholar
Herschey, R. W. E. (1978). Hydrometry, Principles and Practices. Chichester: Wiley. 511 pp.Google Scholar
Hodgkins, R., Cooper, R., Wadham, J., and Tranter, M. (2003). Suspended sediment fluxes in a high-Arctic glacierised catchment: implications for fluvial sediment storage. Sedimentary Geology, 162, 105117.CrossRefGoogle Scholar
Horowitz, A. J. (2008). Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes. Science of the Total Environment, 400, 315343.CrossRefGoogle ScholarPubMed
IPCC. (2007). Climate Change 2007: The Physical Science Basis, Contribution of Working Group to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. Available at http://www.ipcc.ch/ [accessed 21-10-07].Google Scholar
Jacob, Y., Wahr, J., Pfeffer, W. T., and Swenson, S. (2012). Recent contributions of glaciers and ice caps to sea level rise. Nature, 482, 514518.CrossRefGoogle ScholarPubMed
Leggat, M. S., Owens, P. N., Stott, T. A., Forrester, B. J., Déry, S. J., and Menounos, B. (2015). Hydro-meteorological drivers and sources of suspended sediment flux in the pro-glacial zone of the retreating Castle Creek Glacier, Cariboo Mountains, British Columbia, Canada. Earth Surface Processes and Landforms, 40(11), 15421559.CrossRefGoogle Scholar
Liermann, S., Beylich, A. A., and van Welden, A. (2012). Contemporary suspended sediment transfer and accumulation processes in the small proglacial Sætrevatnet sub-catchment, Bødalen, western Norway. Geomorphology, 167, 91101.CrossRefGoogle Scholar
Mernild, S. H., Seidenkrantz, M., Chylek, P., Liston, G. E., and Hasholt, B. (2012a). Climate-driven fluctuations in freshwater flux to Sermilik Fjord, East Greenland, during the last 4000 years. The Holocene, 22, 155164.CrossRefGoogle Scholar
Mernild, S. H., Malmros, J. K., Yde, J. C., and Knudsen, N. T. (2012b). Multi-decadal marine and land-terminating glacier retreat in Ammassalik region, Southeast Greenland. The Cryosphere, 6, 625639, doi:10.5194/tc-6–625-2012.CrossRefGoogle Scholar
Mernild, S. H., Yde, J. C., Malmros, J. K., and Knudsen, N. T. (2013a). Land-terminating glacier volume changes in different Circum-Arctic areas, mid-1980s to late-2000s/2011. Geografisk Tidsskrift-Danish Journal of Geography, 113(1), 6570, DOI:10.1080/00167223.2013.799311CrossRefGoogle Scholar
Mernild, S. H., Lipscomb, W. H., Bahr, D. B., Radić, V., and Zemp, M. (2013b). Global glacier retreat: A revised assessment of committed mass losses and sampling uncertainties. The Cryosphere, 7, 15651577, doi:10.5194/tc-7-1565-2013.CrossRefGoogle Scholar
Milner, A. M., Brown, L. E., and Hannah, D. M. (2009). Hydroecological response of river systems to shrinking glaciers. Hydrological Processes, 23, 6277.CrossRefGoogle Scholar
Moore, R. D., Fleming, S. W., Menounos, B., Wheate, R., Fountain, A., Stahl, K., Holm, K., and Jakob, M. (2009). Glacier change in western North America: influences on hydrology, geomorphic hazards and water quality. Hydrological Processes, 23, 4261.CrossRefGoogle Scholar
Navratil, O., Esteves, M., Legout, C., Gratiot, N., Nemery, J., Willmore, S., and Grangeon, T. (2011). Global uncertainty analysis of suspended sediment monitoring using turbidimeter in a small mountainous river catchment. Journal of Hydrology, 398(3), 246259.CrossRefGoogle Scholar
Orwin, J. F., and Smart, C. C. (2004). Short-term spatial and temporal patterns of suspended sediment transfer in pro-glacial channels, Small River Glacier, Canada. Hydrological Processes, 18, 15211542.CrossRefGoogle Scholar
Owen, L. A., Thackray, G., Anderson, R. S., Briner, J., Kaufman, D., Roe, G., Pfeffer, W., and Yi, C. (2009). Integrated research on mountain glaciers: current status, priorities and future prospects. Geomorphology, 103, 158171.CrossRefGoogle Scholar
Owens, P. N., Batalla, R., Collins, A. J., Gomez, B., Hicks, D. M., Horowitz, A. J., Kondolf, G. M., Marden, M., Page, M. J., Peacock, D. H., Petticrew, E. L., Salomons, W., and Trustrum, N. A. (2005). Fine-grained sediment in river systems: environmental significance and management issues. River Research and Applications, 21, 693717.CrossRefGoogle Scholar
Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu, H., Ma, Y., Ding, Y., Friedlingstein, P., Liu, C., Tan, K., Yu, Y., Zhang, T., and Fang, J. (2010). The impacts of climate change on water, resources and agriculture in China. Nature, 467, 4351. doi:10.1038/nature09364CrossRefGoogle ScholarPubMed
Pike, R. G., Spittlehouse, D. L., Bennett, K. E., Egginton, V. N., Tschaplinski, P. J., Murdock, T. Q., and Werner, A. T. (2008). Climate change and watershed hydrology: Part I – Recent and projected changes in British Columbia. Streamline Watershed Management Bulletin, 11, 18.Google Scholar
Porter, P. R., Vatne, G., Ng, F., and Irvine Fynn, T. D. L. (2010). Ice marginal sediment delivery to the surface of a high arctic glacier: Austre Broggerbreen, Svalbard. Geografiska Annaler Series A, 92(4), 437449.CrossRefGoogle Scholar
Reichert, B. K., Bengtsson, L., and Oerlemans, J. (2002). Recent Glacier Retreat Exceeds Internal Variability. Journal of Climate, 15(21), 30693081.2.0.CO;2>CrossRefGoogle Scholar
Rex, J. F., and Petticrew, E. L. (2008). Delivery of marine-derived nutrients to streambeds by Pacific salmon. Nature Geoscience, 1, 840843.CrossRefGoogle Scholar
Rodenhuis, D., Bennett, A., Werner, A., Murdock, T. Q., and Bronaugh, D. (2007). Hydro-climatology and future climate impacts in British Columbia. Victoria, BC: Pacific Climate Impacts Consortium. URL: www.pacificclimate.org/publications/PCIC.ClimateOverview.pdf.Google Scholar
Schiefer, E., Menounos, B., and Wheate, R. (2007). Recent volume loss of British Columbian glaciers, Canada. Geophysical Research Letters, 34, L16503. doi: 10.1029/2007GL030780, 2007.Google Scholar
Singh, P., and Bengtsson, L. (2005). Impact of warmer climate on melt and evaporation for the rainfed, snow fed and glacier fed basins in the Himalayan region. Journal of Hydrology, 300, 140154.CrossRefGoogle Scholar
Singh, P., and Kumar, N. (1997). Impact assessment of climate change on the hydrological response of a snow and glacier melt runoff dominated Himalayan river. Journal of Hydrology, 193, 316350.CrossRefGoogle Scholar
Stott, T. A., and Grove, J. R. (2001). Short-term discharge and suspended sediment fluctuations in the pro-glacial Skeldal River, N. E. Greenland. Hydrological Processes, 15, 407423.CrossRefGoogle Scholar
Stott, T. A., and Mount, N. J. (2007a). Alpine proglacial suspended sediment dynamics in warm and cool ablation seasons: implications for global warming. Journal of Hydrology, 332, 259270.CrossRefGoogle Scholar
Stott, T. A., and Mount, N. J. (2007b). The impact of rainstorms on short-term spatial and temporal patterns of suspended sediment transfer over a proglacial zone, Ecrins National Park, France. In Effects of River Sediments and Channel Processes on Social, Economic and Environmental Safety, Proceedings of the Tenth International Symposium on River Sedimentation, Vol. V, River Sediment in the Environment, 259266. Moscow. 1–4 August 2007.Google Scholar
Stott, T. A., and Mount, N. J. (2007c). Sustainability in Alpine proglacial zones: Using the 2003 European heat wave to assess the implications of global warming on sediment transport processes. International Journal of Environmental, Cultural, Economic and Social Sustainability, 3, 23136.Google Scholar
Stott, T. A., Nuttall, A., Eden, N., Smith, K., and Maxwell, D. (2008). Suspended sediment dynamics in the Morteratsch proglacial zone, Bernina Alps, Switzerland. Geografiska Annaler, 90A, 299313.CrossRefGoogle Scholar
Stott, T. A., Owens, P. N., Forrester, B. J., and Lee, J. (2009). Suspended sediment fluxes in the Castle Creek Glacier Proglacial Zone, Cariboo Mountains, British Columbia. Innovations in Practice, 2(1), 4970.Google Scholar
Stott, T., Nuttall, A. M., and Biggs, E. (2014). Observed run-off and suspended sediment dynamics from a minor glacierized basin in south-west Greenland. Geografisk Tidsskrift-Danish Journal of Geography, (ahead-of-print), 1–16.CrossRefGoogle Scholar
Tennant, C., Menounos, B., Wheate, R., and Clague, J. J. (2012). Area change of glaciers in the Canadian Rocky Mountains, 1919 to 2006. The Cryosphere, 6(6), 15411552.CrossRefGoogle Scholar
Warburton, J. (1990). An alpine proglacial fluvial sediment budget. Geografiska Annaler, 72A, 261272.CrossRefGoogle Scholar
Zhang, M., Ren, Q., Wei, X., Wang, J., Yang, X., and Jiang, Z. (2011). Climate change, glacier melting and streamflow in the Niyang River Basin, Southeast Tibet, China. Ecohydrology, 4(2), 288298. doi: 10.1002/eco.206CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×