Skip to main content Accessibility help
  • Print publication year: 2010
  • Online publication date: October 2010

23 - Paying attention to the flash-lag effect

from Part IV - Spatial phenomena: forward shift effects


In the flash-lag effect (FLE) a stationary flash is usually mislocalized as lagging behind a moving object in spatiotemporal alignment. Nijhawan, who postulated a mechanism of perceptual extrapolation of motion to explain the phenomenon, rediscovered this perceptual effect. The first challenge to the motion extrapolation hypothesis included an attentional shift mechanism as the alternative, which implicitly relied on the spotlight metaphor for visual attention. Other explanations have been forwarded since then, such as those based on differential latencies or perceptual postdiction. In this chapter we aim to scrutinize the role of attention in either modulating or engendering the FLE.


To deal with even simple challenges, such as grasping an object or avoiding a collision with either stationary or moving obstacles, everyday life demands from us the ability to localize a visual stimulus, within an acceptable degree of accuracy, in both space and time. Learning how to pin down the location of an object moving along its space–time trajectory in a given task depends on the one hand on the amount and quality of perceptual information provided by the sensory system, and on the other hand on the correctness of the action generated during that task. The behavioral outcome is continuously fed back to the nervous system, therefore constraining and refining, in an adaptive way, the representation of the world both in perception and in action.

However optimized our behavior turns out to be, the underlying perceptual edifice we assemble from the available sensory world is by no means unique.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Space and Time in Perception and Action
  • Online ISBN: 9780511750540
  • Book DOI:
Please enter your name
Please enter a valid email address
Who would you like to send this to *
Alais, D., & Burr, D. (2003). The flash-lag effect occurs in audition and cross-modally. Curr Biol 13: 59–63.
Baldo, M. V. C., & Caticha, N. (2004). The flash-lag and Fröhlich effects caught by the net: computational modeling of visual illusions. In A. M., Oliveira, M., Teixeira, G. F., Borges, & M. J., Ferro (eds.), Annual Meeting of the International Society for Psychophysics (Coimbra, Portugal) 222–227.
Baldo, M. V. C., & Caticha, N. (2005). Computational neurobiology of the flash-lag effect. Vision Res 45: 2620–2630.
Baldo, M. V. C., Kihara, A. H., & Klein, S. A. (2000). Lagging behind because of sensory and attentional delays. [Abstract]Invest Ophthalmol Vis Sci 41: S420.
Baldo, M. V. C., Kihara, A. H., Namba, J., & Klein, S. A. (2002). Evidence for an attentional component of perceptual misalignment between moving and flashing stimuli. Perception 31: 17–30.
Baldo, M. V. C., & Klein, S. A. (1995). Extrapolation or attention shift? Nature 378: 565–566.
Baldo, M. V. C., & Namba, J. (2002). The attentional modulation of the flash-lag effect. Braz J Med Biol Res 35: 969–972.
Baldo, M. V. C., Ranvaud, R. D., & Morya, E. (2002). Flag errors in soccer games: the flash-lag effect brought to real life. Perception 31: 1205–1210.
Berry, M. J., Brivanlou, I. H., Jordan, T. A., & Meister, M. (1999). Anticipation of moving stimuli by the retina. Nature 398: 334–338.
Brenner, E., & Smeets, J. B. J. (2000). Computational neurobiology of the flash-lag effect. Vision Res 40: 1645–1648.
Cantor, C. R. L., & Schor, C. M. (2004). Does the temporal impulse response cause the flash-lag effect? [Abstract]J Vis 4(8): 72, 72a,, doi: 10.1167/4.8.72.
Chappell, M., Hine, T. J., Acworth, C., & Hardwick, D. R. (2006). Attention “capture” by the flash-lag flash. Vision Res 46: 3205–3213.
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3: 201–215
Cravo, A. M., & Baldo, M. V. C. (2008). A psychophysical and computational analysis of the spatio-temporal mechanisms underlying the flash-lag effect. Perception 37: 1850–1866.
Dehaene, S., Changeux, J. P., Naccache, L., Sackur, J., & Sergent, C. (2006). Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci 10: 204–211.
Eagleman, D. M. (2001). Visual illusions and neurobiology. Nat Rev Neurosci 2: 920–926.
Eagleman, D. M., & Sejnowski, T. J. (2000a). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.
Eagleman, D. M., & Sejnowski, T. J. (2000b). Reply to Krekelberg et al. Science 289(5482): 1107a.
Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2: 704–716.
Enns, J. T., & Oriet, C. (2004). Perceptual asynchrony: modularity of consciousness or object updating? [Abstract]J Vis 4(8): 27, 27a,, doi: 10.1167/4.8.27.
Erlhagen, W. (2003). Internal models for visual perception. Biol Cybern 88: 409–417.
Fröhlich, F. W. (1923). Über die Messung der Empfindungszeit. Zeitschrift für Sinnesphysiologie 54: 58–78.
Hayes, A. E., & Freyd, J. J. (2002). Representational momentum when attention is divided. Vis Cogn 9: 8–27.
Hikosaka, O., Miyauchi, S., & Shimojo, S. (1993). Focal visual attention produces illusory temporal order and motion sensation. Vision Research 33: 1219–1240.
Houtkamp, R., Spekreijse, H., & Roelfsema, P. R. (2003). A gradual spread of attention during mental curve tracing. Perception & Psychophysics 65: 1136–1144.
Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonom Bull Rev 12: 822–851.
Kanai, R., Sheth, B. R., & Shimojo, S. (2004). Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization. Vision Res 44: 2605–2619.
Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Ann Rev Neurosci 23: 315–341.
Kerzel, D. (2003). Attention maintains mental extrapolation of target position: irrelevant distractors eliminate forward displacement after implied motion. Cognition 88: 109–131.
Kerzel, D., & Gegenfurtner, K. R. (2004). Spatial distortions and processing latencies in the onset repulsion and Fröhlich effects. Vision Res 44: 577–590.
Kerzel, D., & Müsseler, J. (2002). Effects of stimulus material on the Fröhlich illusion. Vision Res 42: 181–189.
Khayat, P. S., Spekreijse, H., & Roelfsema, P. R. (2006). Attention lights up new object representations before the old ones fade away. J Neurosci 26: 138–142.
Khurana, B., & Nijhawan, R. (1995). Reply to Baldo and Klein. Nature 378: 566.
Khurana, B., Watanabe, K., & Nijhawan, R. (2000). The role of attention in motion extrapolation: Are moving objects “corrected” or flashed objects attentionally delayed? Perception 29: 675–692.
Kirschfeld, K., & Kammer, T. (1999). The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vision Res 39: 3702–3709.
Kirschfeld, K., & Kammer, T. (2000). Visual attention and metacontrast modify latency to perception in opposite directions. Vision Res 40: 1027–1033.
Krekelberg, B., & Lappe, M. (2001). Neuronal latencies and the position of moving objects. Trends Neurosci 24: 335–339.
Lamme, V. A. F. (2003). Why visual attention and awareness are different. Trends Cogn Sci 7: 12–18.
Lappe, M., & Krekelberg, B. (1998). The position of moving objects. Perception 27: 1437–1449.
Linares, D., & Lopez-Moliner, J. (2007). Absence of flash-lag when judging global shape from local positions. Vision Res 47: 357–362.
Mackay, D. M. (1958). Perceptual stability of a stroboscopically lit visual field containing selfluminous objects. Nature 181: 507–508.
Metzger, W. (1931). Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit. Psychologische Forschung 16: 176–200.
Moore, C. M., & Enns, J. T. (2004). Object updating and the flash-lag effect. Psychol Sci 15: 866–871.
Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: the Fröhlich effect and attention shifting explanation. Perception and Psychophysics 60: 683–695.
Müsseler, J., & Neumann, O. (1992). Apparent distance reduction with moving stimuli (tandem effect) – Evidence for an attention-shifting model. Psychol Res-Psychologische Forschung 54: 246–266.
Namba, J., & Baldo, M. V. C. (2004). The modulation of the flash-lag effect by voluntary attention. Perception 34: 621–631.
Nieman, D., Nijhawan, R., Khurana, B., & Shimojo, S. (2006). Cyclopean flash-lag illusion. Vision Res 46: 3909–3914.
Nijhawan, R. (1992). Misalignment of contours through the interaction of apparent and real motion systems. [Abstract]Invest Ophthalmol Vis Sci 33: 1415.
Nijhawan, R. (1994). Motion extrapolation in catching. Nature 370: 256–257.
Nijhawan, R. (2002). Neural delays, visual motion and the flash-lag effect. Trends Cogn Sci 6: 387–393.
Nijhawan, R., & Khurana, B. (2000). Conscious registration of continuous and discrete visual events. In T., Metzinger (ed.), Neural Correlates of Consciousness: Empirical and Conceptual Questions (203–219). Cambridge, MA: MIT Press.
Öğmen, H., Patel, S. S., Bedell, H. E., & Camuz, K. (2004). Differential latencies and the dynamics of the position computation process for moving targets, assessed with the flash-lag effect. Vision Res 44: 2109–2128.
Palmer, S. E. (1999). Vision Science: Photons to Phenomenology. Cambridge, MA: MIT Press.
Pashler, H. E. (1998). The Psychology of Attention. Cambridge, MA: MIT Press.
Patel, S. S., Öğmen, H., Bedell, H. E., & Sampath, V. (2000). Flash-lag effect: differential latency, not postdiction. Science 290: 1051a.
Purushothaman, G., Patel, S. S., Bedell, H. E., & Öğmen, H. (1998). Moving ahead through differential visual latency. Nature 396: 424.
Roelfsema, P. R. (2006). Cortical algorithms for perceptual grouping. Ann Rev Neurosci 29: 203–227.
Roelfsema, P. R., Lamme, V. A. F., & Spekreijse, H. (2000). The implementation of visual routines. Vision Res 40: 1385–1411.
Rotman, G., Brenner, E., & Smeets, J. B. J. (2002). Spatial but not temporal cueing influences the mislocalisation of a target flashed during smooth pursuit. Perception 31: 1195–1203.
Sarich, D., Chappell, M., & Burgess, C. (2007). Dividing attention in the flash-lag illusion. Vision Res 47: 544–547.
Schlag, J., & Schlag-Rey, M. (2002). Through the eye, slowly: delays and localization errors in the visual system. Nat Rev Neurosci 3: 191–200.
Serences, J. T., & Yantis, S. (2006). Selective visual attention and perceptual coherence. Trends Cogn Sci 10: 38–45.
Sheth, B., Nijhawan, R., & Shimojo, S. (2000). Changing objects lead briefly flashed ones. Nat Neurosci 3: 489–495.
Shim, W. M., & Cavanagh, P. (2003). Attentive tracking can modulate the illusory misalignment of a flash. [Abstract]J Vis 3(9): 188a,, doi: 10.1167/3.9.188
Spence, C., Shore, D. I., & Klein, R. M. (2001). Multisensory prior entry. J Exp Psychol 4: 799–832.
Tsal, Y. (1983). Movements of attention across the visual field. J Exp Psychol Hum Percept Perform 9: 523–530.
Vreven, D., & Verghese, P. (2005). Predictability and the dynamics of position processing in the flash-lag effect. Perception 34: 31–44.
Whitney, D. (2002). The influence of visual motion on perceived position. Trends Cogn Sci 6: 211–216.
Whitney, D., & Murakami, I. (1998). Latency difference not spatial extrapolation. Nat Neurosci 1: 656–657.
Wundt, W. (1874). Grundzüge der physiologischen psychologies. Leipzig, Germany: Wilhelm Engelmann.
Yantis, S., & Serences, J. T. (2003). Cortical mechanisms of space-based and object-based attentional control. Curr Opin Neurobiol 13: 187–193.