Skip to main content Accessibility help
×
  • Cited by 15
Publisher:
Cambridge University Press
Online publication date:
January 2018
Print publication year:
2018
Online ISBN:
9781108553445

Book description

Metamaterials offer the possibility to control and manipulate electromagnetic radiation. Spoof surface plasmon metamaterials are the focus of this Element of the Metamaterials Series. The fundamentals of spoof surface plasmons are reviewed, and advances on plasmonic metamaterials based on spoof plasmons are presented. Spoof surface plasmon metamaterials on a wide range of geometries are discussed: from planar platforms to waveguides and localized modes, including cylindrical structures, grooves, wedges, dominos or conformal surface plasmons in ultrathin platforms. The Element closes with a review of recent advances and applications such as Terahertz sensing or integrated devices and circuits.

References

[1]Smith, DR, Pendry, JB, Wiltshire, MCK. Metamaterials and negative refractive index. Science, 2004;305(5685):788–92.
[2]Pendry, JB. Photonics: metamaterials in the sunshine. Nature Materials. 2006;5(8):599600.
[3]Shelby, RA, Smith, DR, Schultz, S. Experimental verification of a negative index of refraction. Science, 2001;292(5514):77–9.
[4]Schurig, D, Mock, JJ, Justice, BJ, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006;314:977.
[5]Cui, TJ, Smith, DR, Liu, RP. Metamaterials: Theory, Design and Applications. 1st ed. Springer, 2009.
[6]Liu, Y, Zhang, X. Metamaterials: a new frontier of science and technology. Chemical Society Reviews, 2011;40(5):2494–507.
[7]Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, 1988.
[8]Maier, SA. Plasmonics Fundamentals and Applications. Boston, MA: Springer, 2007.
[9]Barnes, WL, Dereux, A, Ebbesen, TW. Surface plasmon subwavelength optics. Nature, 2003;424(6950):824–30.
[10]Ozbay, E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006 Jan;311(5758):189–93.
[11]Gramotnev, DK, Bozhevolnyi, SI. Plasmonics beyond the diffraction limit. Nature Photonics, 2010;4(2):8391.
[12]Zhang, S, Fan, W, Minhas, B, Frauenglass, A, Malloy, K, Brueck, S. Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Physical Review Letters, 2005;94(3):037402.
[13]Zhang, S, Fan, W, Panoiu, NC, Malloy, KJ, Osgood, RM, Brueck, SRJ. Experimental demonstration of near-infrared negative-index metamaterials. Physical Review Letters, 2005;95(13):137404.
[14]Pendry, JB, Martín-Moreno, L, García-Vidal, FJ. Mimicking surface plasmons with structured surfaces. Science, 2004;305(5685):847–8.
[15]García-Vidal, FJ, Martín-Moreno, L, Pendry, JB. Surfaces with holes in them: new plasmonic metamaterials. Journal of Optics A: Pure and Applied Optics. 2005;7(2):S97S101.
[16]Shalaev, VM. Optical negative-index metamaterials. Nature Photonics. 2007;1(1):41–8.
[17]Cai, WS, Shalaev, VM. Optical Metamaterials: Fundamentals and Applications. 1st ed. New York, NY: Springer, 2009.
[18]Wegener, M, Linden, S. Shaping optical space with metamaterials feature. Physics Today. 2010;63:32–6.
[19]Pendry, JB, Holden, AJ, Stewart, WJ, Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters. 1996;76(25):4773–6.
[20]Pendry, JB, Holden, AJ, Robbins, DJ, Stewart, WJ. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999;47(11):20752084.
[21]Wiltshire, MCK, Pendry, JB, Young, IR, Larkman, DJ, Gilderdale, DJ, Hajnal, JV. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science, 2001;291(5505):849.
[22]Soukoulis, CM, Linden, S, Wegener, M. Negative refractive index at optical wavelengths. Science, 2007;315(5808):47–9.
[23]Lezec, HJ, Dionne, JA, Atwater, HA. Negative refraction at visible frequencies. Science, 2007;316(5823):430–2.
[24]Yao, J, Liu, Z, Liu, Y, et al. Optical negative refraction in bulk metamaterials of nanowires. Science, 2008;321(5891):930.
[25]Valentine, J, Zhang, S, Zentgraf, T, et al. Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008;455(7211):376–9.
[26]Fang, N, Lee, H, Sun, C, Zhang, X. Subdiffraction-limited optical imaging with a silver superlens. Science, 2005;308(5721):534–7.
[27]Taubner, T, Korobkin, D, Urzhumov, Y, Shvets, G, Hillenbrand, R. Near-field microscopy through a SiC superlens. Science, 2006;313(5793):1595.
[28]Zhang, X, Liu, Z. Superlenses to overcome the diffraction limit. Nature Materials, 2008;7(6):435–41.
[29]Zhang, S, Park, YS, Li, J, Lu, X, Zhang, W, Zhang, X. Negative Refractive Index in Chiral Metamaterials. Physical Review Letters, 2009;102(2):023901.
[30]Gansel, JK, Thiel, M, Rill, MS, et al. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009;325(5947):1513–5.
[31]Kaelberer, T, Fedotov, VA, Papasimakis, N, Tsai, DP, Zheludev, NI. Toroidal dipolar response in a metamaterial. Science, 2010;330(6010):1510–12.
[32]Kabashin, AV, Evans, P, Pastkovsky, S, et al. Plasmonic nanorod metamaterials for biosensing. Nature Materials, 2009;8(11):867–71.
[33]Wu, C, Khanikaev, AB, Adato, R, et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nature Materials, 2011;11(1):6975.
[34]Sreekanth, KV, Alapan, Y, ElKabbash, M, et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nature Materials, 2016;15(March):411.
[35]Soukoulis, CM, Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 2011;5(9):523.
[36]Hess, O, Pendry, JB, Maier, SA, Oulton, RF, Hamm, JM, Tsakmakidis, KL. Active nanoplasmonic metamaterials. Nature Materials, 2012;11(7):573–84.
[37]Neira, AD, Olivier, N, Nasir, ME, Dickson, W, Wurtz, GA, Zayats, AV. Eliminating material constraints for nonlinearity with plasmonic metamaterials. Nature Communications. 2015;6:7757.
[38]Meinzer, N, Barnes, WL, Hooper, IR. Plasmonic meta-atoms and metasurfaces. Nature Photonics, 2014;8(12):889–98.
[39]Kildishev, AV, Boltasseva, A, Shalaev, VM. Planar photonics with metasurfaces. Science, 2013;339(6125):1232009.
[40]Ni, X, Emani, NK, Kildishev, AV, Boltasseva, A, Shalaev, VM. Broadband light bending with plasmonic nanoantennas. Science, 2012;335(6067):427.
[41]Yu, N, Genevet, P, Kats, MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science, 2011;334(6054):333–7.
[42]Ding, F, Wang, Z, He, S, Shalaev, V, Kildishev, A. Broadband high-efficiency half-wave plate: a super-cell based plasmonic metasurface approach. ACS Nano, 2015;9(4):4111–19.
[43]Yin, X, Ye, Z, Rho, J, Wang, Y, Zhang, X. Photonic Spin Hall Effect at Metasurfaces. Science, 2013;339(6126):1405–7.
[44]Khorasaninejad, M, Chen, WT, Devlin, RC, Oh, J, Zhu, AY, Capasso, F. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 2016;352(6290):1190–4.
[45]Ramakrishna, SA. Physics of negative refractive index materials. Reports on Progress in Physics, 2005;68(2):449521.
[46]Murray, WA, Barnes, WL. Plasmonic materials. Advanced Materials, 2007;19(22):3771–82.
[47]Maier, SA, Atwater, HA. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. Journal of Applied Physics, 2005;98(1):011101.
[48]Schuck, PJ, Fromm, DP, Sundaramurthy, A, Kino, GS, Moerner, WE. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Physical Review Letters, 2005;94(1):017402.
[49]Mühlschlegel, P, Eisler, HJ, Martin, OJF, Hecht, B, Pohl, DW. Resonant optical antennas. Science, 2005;308(5728):1607–9.
[50]Anger, P, Bharadwaj, P, Novotny, L. Enhancement and quenching of single-molecule fluorescence, Physical Review Letters, 2006;96(11):113002(1–4).
[51]Kühn, S, Hakanson, U, Rogobete, L, Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Physical Review Letters, 2006;97(1):017402(1–4).
[52]Novotny, L. Effective wavelength scaling for optical antennas. Physical Review Letters, 2007;98(26):266802.
[53]Ghenuche, P, Cherukulappurath, S, Taminiau, TH, van Hulst, NF, Quidant, R. Spectroscopic mode mapping of resonant plasmon nanoantennas. Physical Review Letters, 2008;101(11):116805.
[54]Bryant, GW, García de Abajo, FJ, Aizpurua, J. Mapping the plasmon resonances of metallic nanoantennas. Nano Letters, 2008;8(2):631–6.
[55]Kinkhabwala, A, Yu, Z, Fan, S, Avlasevich, Y, Müllen, K, Moerner, WE. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photonics, 2009;3(11):654–7.
[56]Curto, AG, Volpe, G, Taminiau, TH, Kreuzer, MP, Quidant, R, van Hulst, NF. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science, 2010;329(5994):930–3.
[57]Schuller, JA, Barnard, ES, Cai, W, Jun, YC, White, JS, Brongersma, ML. Plasmonics for extreme light concentration and manipulation. Nature Materials, 2010;9(3):193204.
[58]Atwater, HA, Polman, A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010;9(3):865.
[59]Fan, JA, Wu, C, Bao, K, et al. Self-Assembled Plasmonic Nanoparticle Clusters. Science, 2010;328(5982):1135–8.
[60]Novotny, L, van Hulst, NF. Antennas for light. Nature Photonics, 2011;5(2):8390.
[61]Höppener, C, Lapin, ZJ, Bharadwaj, P, Novotny, L. Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field. Physical Review Letters, 2012;109(1):017402.
[62]Rodrigo, S, García-Vidal, FJ, Martín-Moreno, L. Influence of material properties on extraordinary optical transmission through hole arrays. Physical Review B, 2008;77(7):075401.
[63]Johnson, PB, Christy, RW. Optical constants of noble metals. Physical Review B, 1972;6(12):4370–9.
[64]Palik, E. Handbook of Optical Constants of Solids, edited by Palik, Edward D.. Academic Press Handbook Series, New York, NY: Academic Press, 1985.
[65]Novotny, L, Hetch, B. Principles of Nanooptics, 1st ed. Cambridge: Cambridge University Press, 2006.
[66]Archambault, A, Teperik, TV, Marquier, F, Greffet, JJ. Surface plasmon Fourier optics. Physical Review B – Condensed Matter and Materials Physics, 2009;79(19):18.
[67]Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeits Phys., 1968;216(4):398410.
[68]Kretschmann, E, Raether, H. Radiative decay of non-radiative surface plasmons excited by light. Z Naturforschung, A., 1968;23:2135.
[69]Pelton, M, Aizpurua, J, Bryant, G. Metal-nanoparticle plasmonics. Laser & Photonics Review. 2008;2(3):136–59.
[70]Giannini, V, Fernández-Domínguez, AI, Heck, SC, Maier, SA. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chemical Reviews, 2011;111(6):3888–912.
[71]Jackson, JD. Classical Electrodynamics, 3rd ed. Wiley, 1998.
[72]Zenneck, J. Propagation of plane electromagnetic waves along a plane conducting surface. Ann Phys(Leipzig), 1907;23(1):846.
[73]Sommerfeld, A. Propagation of electrodynamic waves along a cylindric conductor. Ann Phys und Chemie, 1899;67:233.
[74]Gómez-Rivas, J, Kuttge, M, Bolivar, PH, Kurz, H, Sánchez-Gil, JA. Propagation of Surface Plasmon Polaritons on Semiconductor Gratings. Phys Rev Lett., 2004;93(25):256804.
[75]Hanham, SM, Maier, SA. Chapter 8 in Terahertz Plasmonic Surfaces for Sensing. John Wiley & Sons, Inc., 2013, pp. 243–60.
[76]Gobau, G. Surface waves and their application to transmission lines. J Appl Phys, 1950;21:1119.
[77]Mills, DL, Maradudin, AA. Surface corrugation and surface-polariton binding in the infrared frequency range. Phys Rev B, 1989;39:1569.
[78]Munk, BA. Frequency Selective Surfaces: Theory and Design. New York, NY: Wiley, 2000.
[79]Ulrich, R, Tacke, M. Submilimeter waveguiding on periodic metal structure. Appl Phys Lett., 1973;22:251.
[80]Hibbins, AP, Evans, BR, Sambles, JR. Experimental verification of designer surface plasmons. Science, 2005;308(5722):670–2.
[81]Hibbins, A, Lockyear, M, Hooper, I, Sambles, J. Waveguide arrays as plasmonic metamaterials: transmission below cutoff. Physical Review Letters, 2006;96(7):073904.
[82]Williams, CR, Andrews, SR, Maier, SA, Fernández-Domínguez, AI, Martín-Moreno, L, García-Vidal, FJ. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photonics, 2008;2(3):175–9.
[83]Yu, N, Wang, QJ, Kats, MA, Fan, JA, Khanna, SP, Li, L, et al. Designer spoof surface plasmon structures collimate terahertz laser beams. Nature Materials, 2010;9(9):730–5.
[84]García de Abajo, FJ, Sáenz, JJ. Electromagnetic surface modes in structured perfect-conductor surfaces. Physical Review Letters, 2005;95(23):233901.
[85]Hendry, E, Hibbins, AP, Sambles, JR. Importance of diffraction in determining the dispersion of designer surface plasmons. Physical Review B, 2008;78(23):235426.
[86]Maier, SA, Andrews, SA, Martín-Moreno, L, García-Vidal, FJ. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Physical Review Letters, 2006;97(17):176805.
[87]Fernández-Domínguez, AI, Moreno, E, Martín-Moreno, L, García-Vidal, FJ. Terahertz wedge plasmon polaritons. Optics Letters, 2009;34(13):2063–5.
[88]Fernández-Domínguez, AI, Moreno, E, Martín-Moreno, L, García-Vidal, FJ. Guiding terahertz waves along subwavelength channels. Physical Review B, 2009;79(23):233104.
[89]Martín-Cano, D, Nesterov, ML, Fernández-Domínguez, AI, García-Vidal, FJ, Martín-Moreno, L, Moreno, E. Domino plasmons for subwavelength terahertz circuitry. Optics Express, 2010;18(2):754–64.
[90]Kats, MA, Woolf, D, Blanchard, R, Yu, N, Capasso, F. Spoof plasmon analogue of metal-insulator-metal waveguides. Optics Express, 2011;19(16):14860–70.
[91]Fernández-Domínguez, AI, Williams, CR, García-Vidal, FJ, Martín-Moreno, L, Andrews, SR, Maier, SA. Terahertz surface plasmon polaritons on a helically grooved wire. Applied Physics Letters, 2008;93(14):141109.
[92]Brock, EMG, Hendry, E, Hibbins, AP. Subwavelength lateral confinement of microwave surface waves. Applied Physics Letters, 2011;99(5):051108.
[93]Nesterov, ML, Martín-Cano, D, Fernández-Domínguez, AI, Moreno, E, Martín-Moreno, L, García-Vidal, FJ Geometrically induced modification of surface plasmons in the optical and telecom regimes. Optics Letters, 2010;35:423–5.
[94]Shen, X, Cui, TJ, Martín-Cano, D, García-Vidal, FJ Conformal surface plasmons propagating on ultrathin and flexible films. Proceedings of the National Academy of Sciences, 2013;110(1):40–5.
[95]Pors, A, Moreno, E, Martín-Moreno, L, Pendry, JB, García-Vidal, FJ Localized spoof plasmons arise while texturing closed surfaces. Physical Review Letters, 2012;108(22):223905.
[96]Huidobro, PA, Moreno, E, Martín-Moreno, L, Pendry, JB, García-Vidal, FJ. Magnetic localized surface plasmons supported by metal structures, in 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), 2014. pp. 1315.
[97]Martín-Moreno, L, García-Vidal, FJ, Lezec, HJ, et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett., 2001;86:1114.
[98]Bravo-Abad, J, García-Vidal, FJ, Martín-Moreno, L. Resonant transmission of light through finite chains of subwavelength holes in a metallic film. Phys Rev Lett., 2004;93:227401.
[99]Mary, A, Rodrigo, SG, García-Vidal, FJ, Martín-Moreno, L. Theory of negative-refractive-index response of double-fishnet structures. Phys Rev Lett., 2008;101:103902.
[100]Qiu, M. Photonic band structures for surface waves on structured metal surfaces. Opt. Express, 2005;13:7583.
[101]Fernández-Domínguez, AI, Martín-Moreno, L, García-Vidal, FJ. Chapter 7, in Maradudin, AA, editor, Surface Electromagnetic Waves on Structured Perfectly Conducting Surfaces. Cambridge: Cambridge University Press, 2011, pp. 232–65.
[102]Morse, PM, Feshbach, H. Methods of Theoretical Physics. New York, NY: McGraw-Hill, 1953.
[103]Roberts, A. Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen. J Opt Soc Am A., 1987;4:1970.
[104]Wood, JJ, Tomlinson, LA, Hess, O, Maier, SA, Fernández-Dominguez, AI. Spoof plasmon polaritons in slanted geometries. Phys Rev B, 2012;85:075441.
[105]Kim, SH, Oh, SS, Kim, KJ, et al. Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons. Physical Review B – Condensed Matter and Materials Physics, 2015;91(3):19.
[106]Gao, Z, Gao, F, Zhang, B. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal. Applied Physics Letters, 2016;108(4):914.
[107]Woolf, D, Kats, Ma, Capasso, F. Spoof surface plasmon waveguide forces. Optics Letters. 2014;39(3):517–20.
[108]Rodriguez, AW, Hui, PC, Woolf, DP, Johnson, SG, Lončar, M, Capasso, F. Classical and fluctuation-induced electromagnetic interactions in micron-scale systems: designer bonding, antibonding, and Casimir forces. Annalen der Physik, 2015;527(1–2):4580.
[109]Davids, PS, Intravaia, F, Dalvit, DaR. Spoof polariton enhanced modal density of states in planar nanostructured metallic cavities. Optics Express, 2014;22(10):12424–37.
[110]Dai, J, Dyakov, SA, Yan, M. Enhanced near-field radiative heat transfer between corrugated metal plates: Role of spoof surface plasmon polaritons. Physical Review B, 2015;92(3):035419.
[111]Ooi, K, Okada, T, Tanaka, K. Mimicking electromagnetically induced transparency by spoof surface plasmons. Phys Rev B, 2011;84(11):115405.
[112]Shen, JT, Catrysse, PB, Fan, S. Mechanism for designing metallic metamaterials with a high index of refraction. Phys Rev Lett, 2005;94:197401.
[113]Shin, J, Shen, JT, Catrysse, PB, Fan, S. Cut-through metal slit array as an anisotropic metamaterial film. IEEE J Selected Topics in Quant Elec., 2006;12:1116.
[114]Shin, YM, So, JK, Won, JH, Park, GS. Frequency-dependent refractive index of one-dimensionally structured thick metal film. Appl Phys Lett., 2007;91:031102.
[115]Zhang, XF, Shen, LF, Ran, LX. Low-frequency surface plasmon polaritons propagating along a metal film with periodic cut-through slits in symmetric and asymmetric environments. J Appl Phys., 2009;105:013704.
[116]Economou, EN. Surface Plasmons in Thin Films. Phys Rev., 1969;182:539.
[117]Shen, L, Chen, X, Yang, TJ. Terahertz surface plasmon polaritons on periodically corrugated metal surfaces. Optics Express, 2008;16:3326.
[118]Collin, S, Sauvan, C, Billaudeau, C, et al. Surface modes on nanostructured metallic surfaces. Phys Rev B, 2009;79:165405.
[119]Hibbins, AP, Hendry, E, Lockyear, MJ, Sambles, JR. Prism coupling to ‘designer’ surface plasmons. Optics Express, 2008;16:20441.
[120]Ferguson, BF, Zhang, XC. Materials for terahertz science and technology. Nature Materials, 2002;1:26.
[121]Tonouchi, M. Cutting-edge terahertz technology. Nature Photonics, 2007;1:97105.
[122]Agrawal, A, Vardeny, ZV, Nahata, A. Engineering the dielectric function of plasmonic lattices. Optics Express, 2008;16:9601.
[123]Zhu, W, Agrawal, A, Nahata, A. Planar plasmonic terahertz guided-wave devices. Optics Express, 2008;16:6216.
[124]Lan, YC, Chern, RL. Surface plasmon-like modes on structured perfectly conducting surfaces. Optics Express, 2006;14:11339.
[125]Ruan, ZC, Qiu, M. Slow electromagnetic wave guided in subwavelength regions along one-dimensional periodically structured metal surface. Appl Phys Lett., 2007;90:201906.
[126]Lockyear, MJ, Hibbins, AP, Sambles, JR. Microwave surface-plasmon-like modes on thin metamaterials. Phys Rev Lett., 2009;102:073901.
[127]Navarro-Cía, M, Beruete, M, Agrafiotis, S, Falcone, F, Sorolla, M, Maier, SA. Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms. Optics Express, 2009;17:18184.
[128]Williams, CR, Misra, M, Andrews, SR, et al. Dual band terahertz waveguidng on a planar metal surface patterned with annular holes. Appl Phys Lett., 2010;96:011101.
[129]Gan, Q, Fu, Z, Ding, YJ, Bartoli, FJ. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys Rev Lett., 2008;100:256803.
[130]Maier, SA, Andrews, SR. Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces. Appl Phys Lett., 2006;88:251120.
[131]Juluri, BK, Lin, SCS, Walker, TR, Jensen, L, Huang, TJ. Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index. Optics Express, 2009;17:2997.
[132]Song, K, Mazumder, P. Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial. IEEE Trans Elec Dev., 2009;56:2792.
[133]Wang, K, Mittleman, DM. Metal wires for terahertz waveguiding. Nature, 2004;432:376.
[134]Jeon, TI, Zhang, J, Grischkowsky, D. THz Sommerfeld wave propagation on a single metal wire. Appl Phys Lett., 2005;86:161904.
[135]Piefke, G. The transmission characteristics of a corrugated wire. IRE Trans Antennas Propag., 1959;7:183.
[136]Fernández-Domínguez, AI, Martín-Moreno, L, García-Vidal, FJ, Andrews, SR, Maier, SA. Spoof surface plasmon polariton modes propagating along periodically corrugated wires. IEEE J Sel Top Quant Elect., 2008;14:1515.
[137]Chen, Y, Song, Z, Li, Y, et al. Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves. Optics Express, 2006;14:13021.
[138]Arfken, GB, Weber, HJ. Mathematical Methods for Physicists, 5th ed. London: Harcourt Academic Press, 2001.
[139]Stockman, M. Nanofocusing of optical energy in tapered plasmonic waveguides. Physical Review Letters, 2004;93(13):14.
[140]Ruting, F, Fernández-Dominguez, AI, Martín-Moreno, L, García-Vidal, FJ. Subwavelength chiral surface plasmons that carry tuneable orbital angular momentum. Phys Rev B, 2012;86:075437.
[141]Fernández-Domínguez, AI, Williams, CR, Martín-Moreno, L, García-Vidal, FJ, Andrews, SR, Maier, SA. Terahertz surface plasmon polaritons on a helically grooved wire. Apl Phys Lett., 2008;93:141109.
[142]Pendry, JB. A chiral route to negative refraction. Science, 2004;306(5700):1353–5.
[143]Crepeau, PJ. Consequences of Symmetry in Periodic Structures. Proc IEEE., 1964;52:33.
[144]Novikov, IV, Maradudin, AA. Channel polaritons. Phys Rev B, 2002;66:035403.
[145]Bozhevolnyi, SI, Volkov, VS, Devaux, E, Laluet, JY, Ebbesen, TW. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006;440:508.
[146]Gao, Z, Shen, L, Zheng, X. Highly-confined guiding of terahertz waves along subwavelength grooves. IEEE Photonics Technology Letters, 2012;24(15):1343–5.
[147]Jiang, T, Shen, L, Wu, JJ, Yang, TJ, Ruan, Z, Ran, L. Realization of tightly confined channel plasmon polaritons at low frequencies. Applied Physics Letters, 2011;99(26):261103.
[148]Zhou, YJ, Jiang, Q, Cui, TJ. Bidirectional bending splitter of designer surface plasmons. Applied Physics Letters, 2011;99(11):111904.
[149]Li, X, Jiang, T, Shen, L, Deng, X. Subwavelength guiding of channel plasmon polaritons by textured metallic grooves at telecom wavelengths. Applied Physics Letters, 2013;102(3):031606.
[150]Fernández-Domínguez, AI, Moreno, E, Martín-Moreno, L, García-Vidal, FJ. Guiding terahertz waves along subwavelength channels. Phys Rev B, 2009;79:233104.
[151]Moreno, E, Garcia-Vidal, FJ, Rodrigo, SG, Martin-Moreno, L, Bozhevolnyi, SI. Channel plasmon-polaritons: modal shape, dispersion, and losses. Opt Lett., 2006 Dec;31(23):34473449.
[152]Fernández-Domínguez, AI, Moreno, E, Martín-Moreno, L, García-Vidal, FJ. Terahertz wedge plasmon polaritons. Opt Lett., 2009 Jul;34(13):20632065.
[153]Pile, DFP, Gramotnev, DK. Channel plasmon-polariton in a triangular groove on a metal surface. Opt Lett., 2004;29(10):1069.
[154]Moreno, E, Rodrigo, SG, Bozhevolnyi, SI, Martín-Moreno, L, García-Vidal, FJ. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys Rev Lett., 2008;100(2):023901.
[155]Gao, Z, Zhang, X, Shen, L. Wedge mode of spoof surface plasmon polaritons at terahertz frequencies. Journal of Applied Physics, 2010;108(11):113104.
[156]Zhao, W, Eldaiki, OM, Yang, R, Lu, Z. Deep subwavelength waveguiding and focusing based on designer surface plasmons. Optics Express, 2010;18(20):2149821503.
[157]Ma, YG, Lan, L, Zhong, SM, Ong, CK. Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit. Optics Express, 2011;19(22):21189.
[158]Kumar, G, Li, S, Jadidi, MM, Murphy, TE. Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars. New Journal of Physics, 2013;15(8).
[159]Pandey, S, Gupta, B, Nahata, A. Terahertz plasmonic waveguides created via 3D printing. Optics Express, 2013;21(21):24422.
[160]Martín-Cano, D, Quevedo-Teruel, O, Moreno, E, Martín-Moreno, L, García-Vidal, FJ. Waveguided spoof surface plasmons with deep-subwavelength lateral confinement. Optics Letters, 2011;36(23):4635–7.
[161]Gupta, B, Pandey, S, Nahata, A. Plasmonic waveguides based on symmetric and asymmetric T-shaped structures. Optics Express, 2014;22(3):2868.
[162]Shen, L, Chen, X, Zhang, X, Agarwal, K. Guiding terahertz waves by a single row of periodic holes on a planar metal surface. Plasmonics, 2011;6(2):301–5.
[163]Hooper, IR, Tremain, B, Dockrey, JA, Hibbins, AP. Massively sub-wavelength guiding of electromagnetic waves. Scientific Reports, 2014;4:7495.
[164]Quesada, R, Martín-Cano, D, García-Vidal, FJ, Bravo-Abad, J. Deep-subwavelength negative-index waveguiding enabled by coupled conformal surface plasmons. Optics Letters, 2014;39(10):2990.
[165]Liu, L, Li, Z, Xu, B, Ning, P, Chen, C, Xu, J, et al. Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes. Applied Physics Letters, 2015;107(20).
[166]Liu, X, Feng, Y, Chen, K, Zhu, B, Zhao, J, Jiang, T. Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures. Optics Express, 2014;22(17):20107.
[167]Gao, X, Hui Shi, J, Shen, X, et al. Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies. Applied Physics Letters, 2013;102(15):15.
[168]Liu, X, Feng, Y, Zhu, B, Zhao, J, Jiang, T. High-order modes of spoof surface plasmonic wave transmission on thin metal film structure. Optics Express, 2013;21(25):31155–65.
[169]Ma, HF, Shen, X, Cheng, Q, Jiang, WX, Cui, TJ. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser and Photonics Reviews, 2014;8(1):146–51.
[170]Gao, X, Zhou, L, Yu, XY, et al. Ultra-wideband surface plasmonic Y-splitter. Optics Express, 2015;23(18):23270.
[171]Han, Z, Zhang, Y, Bozhevolnyi, SI. Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime. Optics Letters. 2015;40(11):2533–6.
[172]Yin, JY, Ren, J, Zhang, HC, Pan, BC, Cui, TJ. Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure. Scientific Reports, 2015;5:8165.
[173]Gao, X, Zhou, L, Liao, Z, Ma, HF, Cui, TJ. An ultra-wideband surface plasmonic filter in microwave frequency. Applied Physics Letters, 2014;104(19):1722.
[174]Zhang, Q, Zhang, HC, Wu, H, Cui, TJ. A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters. Scientific Reports, 2015;5(4):16531.
[175]Zhang, Q, Zhang, HC, Yin, JY, Pan, BC, Cui, TJ. A series of compact rejection filters based on the interaction between spoof SPPs and CSRRs. Scientific Reports. 2016;6(4):28256.
[176]Xu, J, Li, Z, Liu, L, et al. Low-pass plasmonic filter and its miniaturization based on spoof surface plasmon polaritons. Optics Communications. 2016;372:155–9.
[177]Yang, Y, Chen, H, Xiao, S, Mortensen, NA, Zhang, J. Ultrathin 90-degree sharp bends for spoof surface plasmon polaritons. Optics Express, 2015;23(15):19074.
[178]Liang, Y, Yu, H, Zhang, HC, Yang, C, Cui, TJ. On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS. Scientific Reports, 2015;5:14853.
[179]Zhang, HC, Liu, S, Shen, X, Chen, LH, Li, L, Cui, TJ. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser and Photonics Reviews, 2015;9(1):8390.
[180]Yang, Y, Shen, X, Zhao, P, Zhang, HC, Cui, TJ. Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies. Optics Express, 2015;23(6):7031.
[181]Zhang, W, Zhu, G, Sun, L, Lin, F. Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation. Applied Physics Letters, 2015;106(2):1722.
[182]Yin, JY, Ren, J, Zhang, HC, Zhang, Q, Cui, TJ. Capacitive-coupled series spoof surface plasmon polaritons. Scientific Reports, 2016;6:24605.
[183]Pan, BC, Zhao, J, Liao, Z, Zhang, HC, Cui, TJ. Multi-layer topological transmissions of spoof surface plasmon polaritons. Scientific Reports, 2016;6:22702.
[184]Li, Y, Zhang, J, Qu, S, Wang, J, Feng, M, Wang, J. K-dispersion engineering of spoof surface plasmon polaritons for beam steering. Optics Express, 2016;24(2):25692571.
[185]Zhang, HC, Fan, Y, Guo, J, Fu, X, Cui, TJ. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials. ACS Photonics, 2016;3(1):139146.
[186]Zhang, HC, Cui, TJ, Zhang, Q, Fan, Y, Fu, X. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons. ACS Photonics, 2015;2(9):13331340.
[187]Xiang, H, Meng, Y, Zhang, Q, Qin, FF, Xiao, JJ, Han, D, et al. Spoof surface plasmon polaritons on ultrathin metal strips with tapered grooves. Optics Communications, 2015;356:5963.
[188]Yang, BJ, Zhou, YJ. Compact broadband slow wave system based on spoof plasmonic THz waveguide with meander grooves. Optics Communications, 2015;356:336342.
[189]Huidobro, PA, Shen, X, Cuerda, J, Moreno, E, Martín-Moreno, L, García-Vidal, FJ, et al. Magnetic localized surface plasmons. Physical Review X, 2014;4(2):021003.
[190]Harvey, AF. Periodic and guiding structures at microwave frequencies. IRE Transactions on microwave theory and techniques, 1960;8:3061.
[191]Kildal, PS. Artificially soft and hard surfaces in electromagnetics. IEEE Transactions on Antennas and Propagation, 1990;38(10):15371544.
[192]Shen, X, Cui, TJ. Ultrathin plasmonic metamaterial for spoof localized surface plasmons. Laser and Photonics Reviews, 2014;8(1):137145.
[193]Liao, Z, Luo, Y, Fernández-Domínguez, AI, Shen, X, Maier, Sa, Cui, TJ. High-order localized spoof surface plasmon resonances and experimental verifications. Scientific Reports, 2015;5:9590.
[194]Bohren, CF, Huffman, DR. Absorption and Scattering of Light by Small Particles. John Wiley and Sons, 1983.
[195]García-Etxarri, A, Gómez-Medina, R, Froufe-Pérez, LS, et al. Strong magnetic response of submicron silicon particles in the infrared. Optics Express, 2011;19(6):4815–26.
[196]Kuznetsov, AI, Miroshnichenko, AE, Fu, YH, Zhang, J, Luk’yanchuk, B. Magnetic light. Scientific Reports, 2012;2:492.
[197]Dyson, JD. The equiangular spiral antenna. IEEE Transactions on antennas and propagation, 1959;2:181.
[198]Kaiser, JA. The Archimedean two-wire spiral antenna. IEEE Transactions on antennas and propagation. 1960;8:312.
[199]Balanis, CA. Antenna Theory: Analysis and Design, 3rd ed. Wiley-Interscience, 2005.
[200]Baena, JD, Marqués, R, Medina, F, Martel, J. Artificial magnetic metamaterial design by using spiral resonators. Physical Review B, 2004;69(1):014402.
[201]Bilotti, F, Toscano, A, Vegni, L. Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Transactions on Antennas and Propagation, 2007;55(8):22582267.
[202]Zhu, X, Liang, B, Kan, W, Peng, Y, Cheng, J. Deep-subwavelength-scale directional sensing based on highly localized dipolar mie resonances. Physical Review Applied, 2016;5(5):054015.
[203]Ordal, MA, Long, LL, Bell, RJ, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Applied Optics, 1983;22(7):10991120.
[204]CST. Microwave Studio (computer software): www.cst.com/products/cstmws.
[205]Liao, Z, Liu, S, Ma, HF, Li, C, Jin, B, Cui, TJ. Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies. Scientific Reports, 2016;6(4):27596.
[206]Li, Z, Xu, B, Gu, C, Ning, P, Liu, L, Niu, Z, et al. Localized spoof plasmons in closed textured cavities. Applied Physics Letters, 2014;104(25):251601.
[207]Xu, B, Li, Z, Gu, C, Ning, P, Liu, L, Niu, Z, et al. Multiband localized spoof plasmons in closed textured cavities. Appl Opt., 2014;53(30):6950–3.
[208]Yang, BJ, Zhou, YJ, Xiao, QX. Spoof localized surface plasmons in corrugated ring structures excited by microstrip line. Optics Express, 2015;23(16):21434.
[209]Zhou, YJ, Xiao, QX, Jia Yang, B. Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances. Scientific Reports, 2015;5(September):14819.
[210]Gao, Z, Gao, F, Xu, H, Zhang, Y, Zhang, B. Localized spoof surface plasmons in textured open metal surfaces. Optics Letters, 2016;41(10):36.
[211]Ao, DIB, Ajab, KHZR, Iang, WEIXIJ, Heng, QIC, Iao, ZHENL. Experimental demonstration of compact spoof localized surface plasmons. Optics Letters, 2016;41(23):5418–21.
[212]Gao, F, Gao, Z, Shi, X, Yang, Z, Lin, X, Zhang, B. Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances. Optics Express, 2015;23(5):6896–902.
[213]Xiao, QX, Yang, BJ, Zhou, YJ. Spoof localized surface plasmons and Fano resonances excited by flared slot line. Journal of Applied Physics, 2015;118(23):16.
[214]Gao, Z, Gao, F, Shastri, KK, Zhang, B. Frequency-selective propagation of localized spoof surface plasmons in a graded plasmonic resonator chain. Scientific Reports, 2016;6(April):25576.
[215]Gao, Z, Gao, F, Zhang, Y, Shi, X, Yang, Z, Zhang, B. Experimental demonstration of high-order magnetic localized spoof surface plasmons. Applied Physics Letters, 2015;107(4):15.
[216]Gao, Z, Gao, F, Zhang, Y, Zhang, B. Complementary structure for designer localized surface plasmons. Applied Physics Letters, 2015;107(19):191103.
[217]Gao, Z, Gao, F, Zhang, B. High-order spoof localized surface plasmons supported on a complementary metallic spiral structure. Scientific Reports, 2016;6(April):24447.
[218]Gao, Z, Gao, F, Zhang, Y, Zhang, B. Deep-subwavelength magnetic-coupling-dominant interaction among magnetic localized surface plasmons. Physical Review B, 2016;93(19):195410.
[219]Shen, X, Jun Cui, T. Planar plasmonic metamaterial on a thin film with nearly zero thickness. Applied Physics Letters, 2013;102(21):1418.
[220]Shen, X, Pan, BC, Zhao, J, Luo, Y, Cui, TJ. A combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions. ACS Photonics, 2015;2(6):738743.
[221]Ng, B, Wu, J, Hanham, SM, et al. Spoof plasmon surfaces: a novel platform for THz sensing. Adv Opt Mat, 2013;1:543.
[222]Ng, B, Hanham, SM, Wu, J, et al. Broadband terahertz sensing on spoof plasmon surfaces. ACS Phot., 2014;1:1059.
[223]Cao Pan, B, Liao, Z, Zhao, J, et al. Controlling rejections of spoof surface plasmon polaritons using metamaterial particles. Chem Rev., 2008;108(2):494521.
[224]Song, K, Mazumder, P. Active terahertz (THz) spoof surface plasmon polariton (SSPP) switch comprising the perfect conductor meta-material. 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO), 2009;56(11):2792–9.
[225]Song, K, Mazumder, P. Nonlinear spoof surface plasmon polariton phenomena based on conductor metamaterials. Photonics and Nanostructures – Fundamentals and Applications, 2012;10(4):674–9.
[226]Wan, X, Yin, JY, Zhang, HC, Cui, TJ. Dynamic excitation of spoof surface plasmon polaritons. Applied Physics Letters, 2014;105(8).
[227]Sun, W, He, Q, Sun, S, Zhou, L. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light: Science & Applications, 2016;5(1):e16003.
[228]Sun, S, He, Q, Xiao, S, Xu, Q, Li, X, Zhou, L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Materials, 2012;11(5):426–31.
[229]Sun, S, Yang, KY, Wang, CM, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Letters, 2012;12(12):6223–9.
[230]Quevedo-Teruel, O, Ebrahimpouri, M, Kehn, MNM. Ultrawideband metasurface lenses based on off-shifted opposite layers. IEEE Antennas and Wireless Propagation Letters, 2016;15:484487.
[231]Valerio, G, Sipus, Z, Grbic, A, Quevedo-Teruel, O. Accurate equivalent-circuit descriptions of thin glide-symmetric corrugated metasurfaces. IEEE Transactions on Antennas and Propagation. 2017;65(5):26952700.
[232]Gao, F, Gao, Z, Shi, X, et al. Probing the limits of topological protection in a designer surface plasmon structure. Nature Communications, 2015;7(May):17.
[233]Khorasaninejad, M., Capasso, F. Metalenses: Versatile multifunctional photonic components. Science, 2017;358:8100.
[234]Wu, H-W, Han, Y-Z, Chen, H-J, Zhou, Y, Li, X-C, Gao, J, Sheng, Z-Q. Physical mechanism of order between electric and magnetic dipoles in spoof plasmonic structures. Optics Letters, 2017; 42(21):45214524.
[235]Ma, Z, Hanham, SM, Huidobro, PA, Gong, Y, Hong, M, Klein, N, Maier, SA. Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides. APL Photonics, 2017; 11(2):116102.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.