Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T05:58:47.893Z Has data issue: false hasContentIssue false

8 - Dissimilatory nitrate and nitrite ammonification by sulphate-reducing eubacteria

Published online by Cambridge University Press:  22 August 2009

Larry L. Barton
Affiliation:
University of New Mexico
W. Allan Hamilton
Affiliation:
University of Aberdeen
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Sulphate-Reducing Bacteria
Environmental and Engineered Systems
, pp. 241 - 264
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, M. G., Macieira, S., Gonçalves, L. L.et al. (2003). The isolation and characterization of cytochrome c nitrite reductase subunits (NrfA and NrfH) from Desulfovibrio desulfuricans ATCC 27774. Re-evaluation of the spectroscopic data and redox properties. European Journal of Biochemistry, 270, 3904–15CrossRefGoogle ScholarPubMed
Arnoux, P., Sabaty, M., Alric, J.et al. (2003). Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase. Nature Structural Biology, 10, 928–34CrossRefGoogle ScholarPubMed
Bamford, V. A., Angove, H. C., Seward, H. E.et al. (2002). Structure and spectroscopy of the periplasmic cytochrome c nitrite reductase from Escherichia coli. Biochemistry, 41, 2921–31CrossRefGoogle ScholarPubMed
Barton, L. L., LeGall, J., Odom, J. M. and Peck, , , H. D. Jr. (1983). Energy coupling to nitrite respiration in the sulphate-reducing bacterium Desulfovibrio gigas. Journal of Bacteriology, 153, 867–71Google Scholar
Berks, B. C., Richardson, D. J., Robinson, C.et al. (1994). Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha. European Journal of Biochemistry, 220, 117–24CrossRefGoogle ScholarPubMed
Bursakov, S. A., Carneiro, C., Almendra, M. J.et al. (1997). Enzymatic properties and effect of ionic strength on periplasmic nitrate reductase (NAP) from Desulfovibrio desulfuricans ATCC 27774. Biochemical and Biophysical Research Communications, 239, 816–22CrossRefGoogle ScholarPubMed
Bursakov, S. A., Liu, M., Payne, W. J.et al. (1995). Isolation and preliminary characterization of a soluble nitrate reductase from the sulphate reducing organism Desulfovibrio desulfuricans ATCC 27774. Anaerobe, 1, 55–60CrossRefGoogle Scholar
Butler, C. S., Charnock, J. M., Bennett, B.et al. (1999). Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy. Biochemistry, 38, 9000–12CrossRefGoogle ScholarPubMed
Butler, C. S., Fairhurst, S. A., Ferguson, S. J.et al. (2002). Mo(V) co-ordination in the periplasmic nitrate reductase from Paracoccus pantotrophus probed by electron nuclear double resonance (ENDOR) spectroscopy. Biochemical Journal, 363, 817–23CrossRefGoogle ScholarPubMed
Costa, C., Macedo, A., Moura, I.et al. (1990a). Regulation of the hexahaem nitrite/nitric oxide reductase of Desulfovibrio desulfuricans, Wolinella succinogenes and Escherichia coli. A mass spectrometry study. FEBS Letters, 276, 67–70CrossRefGoogle Scholar
Costa, C., Moura, J. J. G., Moura, I.et al. (1990b). Hexahaem nitrite reductase from Desulfovibrio desulfuricans. Mössbauer and EPR characterization of the haem groups. Journal of Biological Chemistry, 254, 14382–7Google Scholar
Costa, C., Moura, J. J. G., Moura, I.et al. (1996). Redox properties of cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. Journal of Biological Chemistry, 271, 23191–6CrossRefGoogle ScholarPubMed
Cunha, C. A., Macieira, S., Dias, J. M.et al. (2003). Cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. The relevance of the two calcium sites in the structure of the catalytic subunit (NrfA). Journal of Biological Chemistry, 278, 17455–65CrossRefGoogle Scholar
Cypionka, H. (1995). Solute transport and cell energetics. In Barton, L. L. (ed.), Biotechnology handbooks, volume 8, Sulphate-reducing bacteria, New York: Plenum Press. pp. 151–84.Google Scholar
Dalsgaard, T. and Bak, F. (1994). Nitrate reduction in a sulphate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Applied and Environmental Microbiology, 60, 291–7Google Scholar
Dannenberg, S., Kroder, M., Dilling, W. and Cypionka, H. (1992). Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulphate-reducing bacteria. Archives of Microbiology, 158, 93–9CrossRefGoogle Scholar
Darwin, A., Hussain, H., Griffiths, L.et al. (1993). Regulation and sequence of the structural gene for cytochrome c552 from Escherichia coli: not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Molecular Microbiology, 9, 1255–65CrossRefGoogle ScholarPubMed
Dias, J.., Than, M. E., Humm, A.et al. (1999). Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods. Structure, 7, 65–79CrossRefGoogle ScholarPubMed
Einsle, O., Messerschmidt, A., Huber, R., Kroneck, P. M. H. and Neese, F. (2002a). Mechanism of the six-electron reduction of nitrite to ammonia by cytochrome c nitrite reductase. Journal of American Chemical Society, 124, 11737–45CrossRefGoogle Scholar
Einsle, O., Messerschmidt, A., Stach, P.et al. (1999). Structure of cytochrome c nitrite reductase. Nature, 400, 476–80CrossRefGoogle ScholarPubMed
Einsle, O., Stach, P., Messerschmidt, A.et al. (2002b). Crystallization and preliminary X-ray analysis of the membrane-bound cytochrome c nitrite reductase complex (NrfHA) from Wolinella succinogenes. Acta Crystallographica Section D, 58, 341–2CrossRefGoogle Scholar
Einsle, O., Stach, P., Messerschmidt, A.et al. (2000). Cytochrome c nitrite reductase from Wolinella succinogenes. Structure at 1.6 A resolution, inhibitor binding, and haem-packing motifs. Journal of Biological Chemistry, 275, 39608–16CrossRefGoogle Scholar
Fauque, G. D. (1995). Ecology of sulphate-reducing bacteria. In Barton, L. L. (ed.), Biotechnology handbooks, volume 8, Sulphate-reducing bacteria, New York: Plenum Press. pp. 217–41.Google Scholar
Fauque, G., LeGall, J. and Barton, L. L. (1991). Sulphate-reducing and sulfur-reducing bacteria. In Shively, J. M. and Barton, L. L. (eds.), Variations in autotrophic life. London: Academic Press Limited. pp. 271–337.Google Scholar
Fauque, G. and Ollivier, B. (2004). Anaerobes: the sulphate-reducing bacteria as an example of metabolic diversity. In Bull, A. T. (ed.), Microbial diversity and bioprospecting. Washington, DC: ASM Press. pp. 169–76.CrossRefGoogle Scholar
Frangioni, B., Arnoux, P., Sabaty, M.et al. (2004). In Rhodobacter sphaeroides respiratory nitrate reductase, the kinetics of substrate binding favors intramolecular electron transfer. Journal of the American Chemical Society, 126, 1328–9CrossRefGoogle ScholarPubMed
Fuseler, K., Krekeler, D., Sydow, U. and Cypionka, H. (1996). A common pathway of sulfide oxidation by sulphate-reducing bacteria. FEMS Microbiology Letters, 144, 129–34CrossRefGoogle Scholar
González, P. J., Correia, C., Moura, I., Brondino, C. D. and Moura, J. J. G. (2006a). Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction. Journal of Inorganic Biochemistry, 100, 1015–23CrossRefGoogle Scholar
Gonzalez, P. J., Rivas, M. G., Bursakov, S. A.et al. (2006b). EPR and redox properties of periplasmic nitrate reductase from Desulfovibrio desulfuricans ATCC 27774. Journal of Biological Inorganic Chemistry, 11, 609–16CrossRefGoogle Scholar
Greene, E. A., Hubert, C., Nemati, M., Jenneman, G. E. and Voordouw, G. (2003). Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environmental Microbiology, 5, 607–17CrossRefGoogle ScholarPubMed
Haveman, S. A., Greene, E. A., Stilwell, C. P., Voordouw, J. K. and Voordouw, G. (2004). Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. Journal of Bacteriology, 186, 7944–50CrossRefGoogle ScholarPubMed
Haveman, S. A., Greene, E. A. and Voordouw, G. (2005). Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria. Environmental Microbiology, 7, 1461–5CrossRefGoogle ScholarPubMed
Hille, R. (1996). The mononuclear molybdenum enzymes. Chemical Reviews, 96, 2757–816CrossRefGoogle ScholarPubMed
Hubert, C., Nemati, M., Jenneman, G. and Voordouw, G. (2005). Corrosion risk associated with microbial souring control using nitrate or nitrite. Applied Microbiology and Biotechnology, 68, 272–82CrossRefGoogle ScholarPubMed
Jenneman, G. E., McInerney, M. J. and Knapp, R. M. (1986). Effect of nitrate on biogenic sulfide production. Applied and Environmental Microbiology, 51, 1205–11Google ScholarPubMed
Kajie, D. and Anraku, Y. (1986). Purification of a hexahaem cytochrome c552 from Escherichia coli K12 and its properties as a nitrite reductase. European Journal of Biochemistry, 154, 457–63CrossRefGoogle Scholar
Keith, S. M. and Herbert, R. A. (1983). Dissimilatory nitrate reduction by a strain of Desulfovibrio desulfuricans. FEMS Microbiology Letters, 18, 55–9CrossRefGoogle Scholar
Kennedy, M. L. and Gibney, B. R. (2001). Metalloprotein and redox protein design. Current Opinions in Structural Biology, 11, 485–90CrossRefGoogle ScholarPubMed
Krekeler, D. and Cypionka, H. (1995). The preferred electron acceptor of Desulfovibrio desulfuricans CSN. FEMS Microbiology Ecology, 17, 271–8CrossRefGoogle Scholar
LeGall, J. and Fauque, G. (1988). Dissimilatory reduction of sulfur compounds. In Zehnder, A. J. B. (ed.), Biology of anaerobic microorganims. New York: John Wiley and Sons, Inc. pp. 587–639.Google Scholar
Lie, T. J., Clawson, M. L., Godchaux, W. and Leadbetter, E. R. (1999). Sulfdidogenesis from 2-aminoethanesulfonate (taurine) fermentation by a morphologically unusual sulphate-reducing bacterium, Desulforhopalus singaporensis sp. nov. Applied and Environmental Microbiology, 65, 3328–34Google Scholar
Liu, M.-C., Bakel, B. W., Liu, M.-Y. and Dao, T. N. (1988). Purification of Vibrio fischeri nitrite reductase and its characterization as a hexahaem c-type cytochrome. Archives of Biochemistry and Biophysics, 262, 259–65CrossRefGoogle Scholar
Liu, M.-C., Liu, M.-Y., Payne, W. J., Peck, H. D. Jr. and LeGall, J. (1983). Wolinella succinogenes nitrite reductase: purification and properties. FEMS Microbiology Letters, 19, 201–6CrossRefGoogle Scholar
Liu, M.-C., Liu, M.-Y., Payne, W. J.et al. (1987). Comparative EPR studies on the nitrite reductases from Escherichia coli and Wolinella succinogenes. FEBS Letters, 218, 227–30CrossRefGoogle ScholarPubMed
Liu, M. C. and Peck, H. D. Jr. (1981). The isolation of a hexahaem cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase. Journal of Biological Chemistry, 256, 13159–64Google Scholar
Lopez-Cortès, A., Fardeau, M.-L., Fauque, G., Joulian, C. and Ollivier, B. (2006). Reclassification of the sulphate-, nitate-reducing bacterium Desulfovibrio vulgaris subsp. oxamicus as Desulfovibrio oxamicus sp. nov.comb. nov. International Journal of Systematic and Evolutionary Microbiology, 56, 1495–9CrossRefGoogle Scholar
Loubinoux, J., Bronowicki, J.-P., Pereira, I. A. C., Mougenel, J.-L. and LeFaou, A. E. (2002). Sulphate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiology Ecology, 40, 107–12CrossRefGoogle Scholar
Marietou, A., Richardson, D. J., Cole, J. and Mohan, S. (2005). Nitrate reduction by Desulfovibrio desulfuricans: a periplasmic nitrate reductase system that lacks NapB, but includes a unique tetrahaem c-type cytochrome, NapM. FEMS Microbiology Letters, 248, 217–25CrossRefGoogle Scholar
McCready, R. G. L., Gould, W. D. and Cook, F. D. (1983). Respiratory nitrate reduction by Desulfovibrio sp. Archives of Microbiology, 135, 182–5CrossRefGoogle Scholar
Mitchell, G. J., Jones, J. G. and Cole, J. A. (1986). Distribution and regulation of nitrate and nitrite reduction by Desulfovibrio and Desulfotomaculum species. Archives of Microbiology, 144, 35–40CrossRefGoogle Scholar
Mori, K., Kim, H., Kakegawa, T. and Hanada, S. (2003). A novel lineage of sullate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles, 7, 283–90CrossRefGoogle ScholarPubMed
Moura, J. J. G., Brondino, C. D., Trincao, J. and Romao, M. J. (2004). Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases. Journal of Biological Inorganic Chemistry, 9, 791–9CrossRefGoogle ScholarPubMed
Moura, I., Bursakov, S., Costa, C. and Moura, J. J. G. (1997). Nitrate and nitrite utilization in sulphate-reducing bacteria. Anaerobe, 3, 279–290CrossRefGoogle Scholar
Parekh, M., Drake, H. L. and Daniel, S. L. (1996). Bidirectional transformation of aromatic aldehydes by Desulfovibrio desulfuricans under nitrate-dissimilating conditions. Letters in Applied Microbiology, 22, 115–20CrossRefGoogle ScholarPubMed
Pereira, I. C., Abreu, I. A., Xavier, A. V. M., LeGall, J. and Teixeira, M. (1996). Nitrite reductase from Desulfovibrio desulfuricans (ATCC 27774) – a heterooligomer haem protein with sulfite reductase activity. Biochemical and Biophysical Research Communications, 224, 611–18CrossRefGoogle ScholarPubMed
Pereira, I. A. C., LeGall, J., Xavier, A. V. and Teixeira, M. (2000). Characterization of a haem c nitrite reductase from a non-ammonifiying microorganism, Desulfovibrio vulgaris Hildenborough. BBA – Protein Structure and Molecular Enzymology, 1481, 119–30CrossRefGoogle Scholar
Plugge, C. M., Balk, M. and Stams, A. J. M. (2002). Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. International Journal of Systematic and Evolutionary Microbiology, 52, 391–9CrossRefGoogle ScholarPubMed
Potter, L. C., Millington, P., Griffiths, L., Thomas, G. H. and Cole, J. A. (1999). Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth?Biochemical Journal, 344, 77–84Google ScholarPubMed
Rajagopal, B. S. and LeGall, J. (1989). Utilization of cathodic hydrogen by hydrogen-oxidizing bacteria. Applied Microbiology and Biotechnology, 31, 406–12CrossRefGoogle Scholar
Rehr, B. and Klemme, J.-H. (1986). Metabolic role and properties of nitrite reductase of nitrate-ammonifying marine Vibrio species. FEMS Microbiology Letters, 35, 325–8CrossRefGoogle Scholar
Reyes, F., Roldan, M. D., Klipp, W., Castillo, F. and Moreno-Vivian, C. (1996). Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases. Molecular Microbiology, 19, 1307–18CrossRefGoogle ScholarPubMed
Schumacher, W., Hole, U. and Kroneck, P. M. H. (1994). Ammonia-forming cytochrome c nitrite reductase from Sulfurospirillum deleyianum is a tetrahaem protein: new aspects of the molecular composition and spectroscopic properties. Biochemical and Biophysical Research Communications, 205, 911–16CrossRefGoogle Scholar
Schumacher, W. and Kroneck, P. M. H. (1991). Dissimilatory hexahaem c nitrite reductase of ‘Spirillum’ strain 5175: purification and properties. Archives of Microbiology, 156, 70–4CrossRefGoogle Scholar
Seitz, H.-J. and Cypionka, H. (1986). Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Archives of Microbiology, 146, 63–7CrossRefGoogle Scholar
Senez, J. C. and Pichinoty, F. (1958). Reduction of nitrite at the expense of molecular hydrogen by Desulfovibrio desulfuricans and other bacterial species. Bulletin de la Société Chimique et Biologique de Paris, 40, 2099–17Google ScholarPubMed
Siddiqui, R. A., Warnecke-Eberz, U., Hengsberger, A.et al. (1993). Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. Journal of Bacteriology, 175, 5867–76CrossRefGoogle ScholarPubMed
Sonne-Hansen, J. and Ahring, B. K. (1999). Thermodesulfobacterium hveragerdense sp. nov., and Thermodesulfovibrio islandicus sp. nov., two thermophilic sulphate-reducing bacteria isolated from an Icelandic hot spring. Systematic and Applied Microbiology, 22, 559–64CrossRefGoogle Scholar
Steenkamp, D. J. and Peck, H. D. Jr. (1981). Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans. Journal of Biological Chemistry, 256, 5450–8Google ScholarPubMed
Stolz, J. F. and Basu, P. (2002). Evolution of nitrate reductase: molecular and structural variations on a common function. ChemBioChem, 3, 198–2063.0.CO;2-C>CrossRefGoogle ScholarPubMed
Tezcan, F. A., Winkler, J. R. and Gray, H. B. (1998). Effects of ligation and folding on reduction potentials of haem proteins. Journal of American Chemical Society, 120, 13383–8CrossRefGoogle Scholar
Thomas, G., Potter, L. and Cole, J. A. (1999). The periplasmic nitrate reductase from Escherichia coli: a heterodimeric molybdoprotein with a double-arginine signal sequence and an unusual leader peptide cleavage site. FEMS Microbiology Letters, 174, 167–71CrossRefGoogle ScholarPubMed
Trinkerl, M., Breunig, A., Schauder, R. and Konig, H. (1990). Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulphate-reducing bacterium from the hindgut of a termite. Systematic and Applied Microbiology, 13, 372–7CrossRefGoogle Scholar
Walker, F. A., Huynh, B. H., Scheidt, W. R. and Osvath, S. R. (1986). Models of the cytochromes b. Effect of axial ligand plane orientation on the EPR and Mössbauer spectra of low-spin ferrihaems. Journal of American Chemical Society, 108, 5288–97CrossRefGoogle Scholar
Widdel, F. (1988). Microbiology and ecology of sulphate- and sulfur-reducing bacteria. In Zehnder, A. J. B. (ed.), Biology of anaerobic microorganims. New York: John Wiley and Sons, Inc. pp. 469–585.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×