Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T04:04:31.476Z Has data issue: false hasContentIssue false

2 - HIV basic virology for clinicians

from Part I - Scientific basis of pediatric HIV care

Published online by Cambridge University Press:  03 February 2010

Steven L. Zeichner
Affiliation:
HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
Steven L. Zeichner
Affiliation:
National Cancer Institute, Bethesda, Maryland
Jennifer S. Read
Affiliation:
National Cancer Institute, Bethesda, Maryland
Get access

Summary

Introduction

The molecular details of the HIV replication cycle largely determine the pathogenesis of the diseases caused by HIV and constrain the possible therapeutic strategies. Optimal diagnosis, assessment, and treatment of HIV infection in children thus require knowledge of the viral replication cycle, the viral targets affected by the antiretroviral agents, and the components of the virus detected by the tests used to manage the disease.

Classification and origin of HIV

HIV-1 is a member of the Lentivirus genus of retroviruses (reviewed in [1]). The virus is believed to have entered the human population in Africa about 70 years ago [2], probably as humans hunted and butchered chimpanzees for “bush meat” [3]. The animal virus most closely related to HIV-1, a simian immunodeficiency virus (SIV) designated SIVCPZ, is found in chimpanzees, and certain chimpanzee populations continue to harbor large numbers of retroviruses [4]. HIV-2, a less pathogenic relative of HIV-1, infects some human populations in western Africa, with a relatively small number of cases in other parts of the world [5]. HIV-2 is believed to derive from an immunodeficiency virus that infects monkeys. The closest relative to HIV-2 is a simian immunodeficiency virus, SIVSMM, with SMM denoting sooty mangabey monkey. HIV-2 has some biological properties that distinguish it from HIV-1, and the disease caused by HIV-2 differs from the disease caused by HIV-1. Untreated, HIV-2 disease is generally a much less fulminant disorder than the disease caused by HIV-1.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Freed, E. & Martin, M. Human Immunodeficiency Viruss and their replication. In: D. Knipe, P. Howley, D. Griffin, M. Martin, R. Lamb & B. Roizman (eds.), Fields Virology. Philadelphia, PA: Lippincott Williams and Wilkins (2001), pp. 1971–2041
Korber, B., Muldoon, M., Theiler, J.. Timing the ancestor of the Human Immunodeficiency Virus-1 pandemic strains. Science 288: 5472 (2000), 1789–96CrossRefGoogle ScholarPubMed
Gao, F., Bailes, E., Robertson, D. L.. Origin of Human Immunodeficiency Virus-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397: 6718 (1999), 436–41CrossRefGoogle ScholarPubMed
Santiago, M. L., Rodenburg, C. M., Kamenya, S.. Simian Immunodeficiency Viruscpz in wild chimpanzees. Science 295: 5554 (2002), 465CrossRefGoogle ScholarPubMed
Pepin, J., Morgan, G., Dunn, D.. Human Immunodeficiency Virus-2-induced immunosuppression among asymptomatic West African prostitutes: evidence that Human Immunodeficiency Virus-2 is pathogenic, but less so than Human Immunodeficiency Virus-1. Acquired Immune Deficiency Syndrome 5:10 (1991), 1165–72Google Scholar
Robertson, D. L., Anderson, J. P., Bradac, J. A.. Human Immunodeficiency Virus-1 nomenclature proposal. Science 288: 5463 (2000), 55–6CrossRefGoogle ScholarPubMed
Turner, B. G. and Summers, M. F.Structural biology of Human Immunodeficiency Virus. J. Mol. Biol. 285: 1 (1999), 1–32CrossRefGoogle Scholar
Arthur, L. O., Bess, J. W. J., Sowder, R. C. I.. Cellular proteins bound to immunodeficiency viruses: implications for pathogenesis and vaccines. Science 258 (1992), 1935–8CrossRefGoogle ScholarPubMed
Bour, S., Geleziunas, R. & Wainberg, M. A.The human immunodeficiency virus type 1 (Human Immunodeficiency Virus-1) Cluster of Differentiation4 receptor and its central role in promotion of Human Immunodeficiency Virus-1 infection. Microbiol. Rev. 59:1 (1995), 63–93Google Scholar
Eckert, D. M. & Kim, P. S.Mechanisms of viral membrane fusion and its inhibition. Annu. Rev. Biochem. 70 (2001), 777–810CrossRefGoogle ScholarPubMed
Golding, H., Zaitseva, M., Rosny, E.. Dissection of human immunodeficiency virus type 1 entry with neutralizing antibodies to gp41 fusion intermediates. J. Virol. 76: 13 (2002), 6780–90CrossRefGoogle ScholarPubMed
Wild, C. T., Shugars, D. C., Greenwell, T. K., McDanal, C. B. & Matthews, T. J.Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc. Natl. Acad. Sci. U. S. A. 91: 21 (1994), 9770–4CrossRefGoogle ScholarPubMed
Novina, C. D., Murray, M. F., Dykxhoorn, D. M.. siRibonucleic Acid-directed inhibition of Human Immunodeficiency Virus-1 infection. Nat. Med. 8: 7 (2002), 681–6CrossRefGoogle Scholar
Mori, T. & Boyd, M. R.Cyanovirin-N, , a potent human immunodeficiency virus-inactivating protein, blocks both Cluster of Differentiation4-dependent and Cluster of Differentiation4-independent binding of soluble gp120 (sgp120) to target cells, inhibits sCluster of Differentiation4-induced binding of sgp120 to cell-associated CXCR4, and dissociates bound sgp120 from target cells. Antimicrob. Agents Chemother. 45: 3 (2001), 664–72CrossRefGoogle Scholar
Berger, E. A., Murphy, P. M. & Farber, J. M.Chemokine receptors as Human Immunodeficiency Virus-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol. 17 (1999), 657–700CrossRefGoogle ScholarPubMed
Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A.Human Immunodeficiency Virus-1 entry cofactor: functional cDeoxyribonucleic Acid cloning of a seven-transmembrane, G protein-coupled receptor. Science 272: 5263 (1996), 872–7CrossRefGoogle ScholarPubMed
Choe, H., Farzan, M., Sun, Y.. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary Human Immunodeficiency Virus-1 isolates. Cell 85:7 (1996), 1135–48CrossRefGoogle Scholar
Alkhatib, G., Combadiere, C., Broder, C. C.. CC CKR5: a RANTES, Macrophage Inflammatory Protein-1alpha, Macrophage Inflammatory Protein-1beta receptor as a fusion cofactor for macrophage-tropic Human Immunodeficiency Virus-1. Science 272: 5270 (1996), 1955–8CrossRefGoogle Scholar
Cocchi, F., DeVico, A. L., Garzino-Demo, A., Arya, S. K., Gallo, R. C. & Lusso, P.Identification of RANTES, Macrophage Inflammatory Protein-1 alpha, and Macrophage Inflammatory Protein-1 beta as the major Human Immunodeficiency Virus-suppressive factors produced by Cluster of Differentiation8+ T cells. Science 270: 5243 (1995), 1811–5CrossRefGoogle Scholar
Strizki, J. M., Xu, S., Wagner, N. E.. SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of Human Immunodeficiency Virus-1 infection in vitro and in vivo. Proc. Natl. Acad. Sci. U. S. A. 98: 22 (2001), 12718–23CrossRefGoogle Scholar
Kostrikis, L. G., Huang, Y., Moore, J. P.. A chemokine receptor CCR2 allele delays Human Immunodeficiency Virus-1 disease progression and is associated with a CCR5 promoter mutation. Nat. Med. 4: 3 (1998), 350–3CrossRefGoogle ScholarPubMed
Smith, M. W., Dean, M., Carrington, M.. Contrasting genetic influence of CCR2 and CCR5 variants on Human Immunodeficiency Virus-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter Acquired Immune Deficiency Syndrome Cohort Study (Multicenter Acquired Immune Deficiency Syndrome Cohort Study), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. Science 277: 5328 (1997), 959–65CrossRefGoogle ScholarPubMed
Kostrikis, L. G., Neumann, A. U., Thomson, B.. A polymorphism in the regulatory region of the CC-chemokine receptor 5 gene influences perinatal transmission of human immunodeficiency virus type 1 to African-American infants. J. Virol. 73: 12 (1999), 10264–71Google ScholarPubMed
Gotte, M., Li, X. & Wainberg, M. A.Human Immunodeficiency Virus-1 reverse transcription: a brief overview focused on structure-function relationships among molecules involved in initiation of the reaction. Arch. Biochem. Biophys. 365: 2 (1999), 199–210CrossRefGoogle ScholarPubMed
Isel, C., Ehresmann, C., Keith, G., Ehresmann, B. & Marquet, R.Initiation of reverse transcription of Human Immunodeficiency Virus-1: secondary structure of the Human Immunodeficiency Virus-1 Ribonucleic Acid/tRibonucleic Acid(3Lys) (template/primer). J. Mol. Biol. 247: 2 (1995), 236–50CrossRefGoogle Scholar
Bukrinsky, M. I., Sharova, N., McDonald, T. L., Pushkarskaya, T., Tarpley, W. G. & Stevenson, M.Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc. Natl. Acad. Sci. U.S.A. 90: 13 (1993), 6125–9CrossRefGoogle ScholarPubMed
Farnet, C. M. & Bushman, F. D.Human Immunodeficiency Virus-1 cDeoxyribonucleic Acid integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell 88: 4 (1997), 483–92CrossRefGoogle Scholar
Kalpana, G. V., Marmon, S., Wang, W., Crabtree, G. R. & Goff, S. P.Binding and stimulation of Human Immunodeficiency Virus-1 integrase by a human homolog of yeast transcription factor SNF5. Science 266: 5193 (1994), 2002–6CrossRefGoogle ScholarPubMed
McDonald, D., Vodicka, M. A., Lucero, G.. Visualization of the intracellular behavior of Human Immunodeficiency Virus in living cells. J. Cell Biol. 159: 3 (2002), 441–52CrossRefGoogle ScholarPubMed
Rouzic, E., Mousnier, A., Rustum, C.. Docking of Human Immunodeficiency Virus-1 Vpr to the nuclear envelope is mediated by the interaction with the nucleoporin hCG1. J. Biol. Chem. 277: 47 (2002), 45091–8CrossRefGoogle ScholarPubMed
Schroder, A. R., Shinn, P., Chen, H., Berry, C., Ecker, J. R. & Bushman, F.Human Immunodeficiency Virus-1 integration in the human genome favors active genes and local hotspots. Cell 110: 4 (2002), 521–9CrossRefGoogle ScholarPubMed
Fujiwara, T. & Mizuuchi, K.Retroviral Deoxyribonucleic Acid integration: structure of an integration intermediate. Cell 54: 4 (1988), 497–504CrossRefGoogle ScholarPubMed
Roth, M. J., Schwartzberg, P. L. & Goff, S. P.Structure of the termini of Deoxyribonucleic Acid intermediates in the integration of retroviral Deoxyribonucleic Acid: dependence on IN function and terminal Deoxyribonucleic Acid sequence. Cell 58: 1 (1989), 47–54CrossRefGoogle Scholar
Gao, K., Gorelick, R. J., Johnson, D. G. & Bushman, F.Cofactors for human immunodeficiency virus type 1 cDeoxyribonucleic Acid integration in vitro. J. Virol. 77: 2 (2003), 1598–603CrossRefGoogle Scholar
Englund, G., Theodore, T. S., Freed, E. O., Engleman, A. & Martin, M. A.Integration is required for productive infection of monocyte-derived macrophages by human immunodeficiency virus type 1. J. Virol. 69: 5 (1995), 3216–9Google ScholarPubMed
Condra, J. H., Miller, M. D., Hazuda, D. J. & Emini, E. A.Potential new therapies for the treatment of Human Immunodeficiency Virus-1 infection. Annu. Rev. Med. 53 (2002), 541–55CrossRefGoogle Scholar
Craigie, R.Human Immunodeficiency Virus integrase, a brief overview from chemistry to therapeutics. J. Biol. Chem. 276: 26 (2001), 23213–6CrossRefGoogle ScholarPubMed
Hazuda, D. J., Felock, P., Witmer, M.. Inhibitors of strand transfer that prevent integration and inhibit Human Immunodeficiency Virus-1 replication in cells. Science 287: 5453 (2000), 646–50CrossRefGoogle ScholarPubMed
Grobler, J. A., Stillmock, K., Hu, B.. Diketo acid inhibitor mechanism and Human Immunodeficiency Virus-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc. Natl. Acad. Sci. U. S. A. 99: 10 (2002), 6661–6CrossRefGoogle ScholarPubMed
Nabel, G. & Baltimore, D.An inducible transcription factor activates expression of human immunodeficiency virus in T cells [published erratum appears in Nature344: 6262 (1990 Mar 8), 178]. Nature 326: 6114 (1987), 711–3CrossRefGoogle Scholar
Laughlin, M., Zeichner, S., Kolson, D.. Sodium butryate treatment of cells latently infected with Human Immunodeficiency Virus-1 results in the expression of unspliced viral Ribonucleic Acid. Virology 196 (1993), 496–505CrossRefGoogle Scholar
Sheridan, P. L., Mayall, T. P., Verdin, E. & Jones, K. A.Histone acetyltransferases regulate Human Immunodeficiency Virus-1 enhancer activity in vitro. Genes Dev. 11: 24 (1997), 3327–40CrossRefGoogle ScholarPubMed
Rothe, M., Sarma, V., Dixit, V. M. & Goeddel, D. V.TRAF2-mediated activation of NF-kappa B by Tumor Necrosing Factor receptor 2 and Cluster of Differentiation40. Science 269: 5229 (1995), 1424–7CrossRefGoogle Scholar
Jones, K. A., Kadonaga, J. T., Luciw, P. A. & Tjian, R.Activation of the Acquired Immune Deficiency Syndrome retrovirus promoter by the cellular transcription factor, Sp1. Science 232: 4751 (1986), 755–9CrossRefGoogle ScholarPubMed
Zeichner, S. L., Kim, J. Y. & Alwine, J. C.Linker-scanning mutational analysis of the transcriptional activity of the human immunodeficiency virus type 1 long terminal repeat. J. Virol. 65: 5 (1991), 2436–44Google ScholarPubMed
Kim, J., Gonzalez-Scarano, F., Zeichner, S. & Alwine, J.Replication of type 1 human immunodeficiency viruses containing linker substitution mutations in the -201 to -130 region of the long terminal repeat. J. Virol. 67 (1993), 1658–62Google ScholarPubMed
Berkhout, B. & Jeang, K. T.Functional roles for the TATA promoter and enhancers in basal and Tat-induced expression of the human immunodeficiency virus type 1 long terminal repeat. J. Virol. 66: 1 (1992), 139–49Google ScholarPubMed
Harrich, D., Garcia, J., Wu, F., Mitsuyasu, R., Gonazalez, J. & Gaynor, R.Role of SP1-binding domains in in vivo transcriptional regulation of the human immunodeficiency virus type 1 long terminal repeat. J. Virol. 63: 6 (1989), 2585–91Google ScholarPubMed
Ross, E. K., Buckler-White, A. J., Rabson, A. B., Englund, G. & Martin, M. A.Contribution of NF-kappa B and Sp1 binding motifs to the replicative capacity of human immunodeficiency virus type 1: distinct patterns of viral growth are determined by T-cell types. J. Virol. 65: 8 (1991), 4350–8Google ScholarPubMed
Lustig, B. & Jeang, K. T.Biological applications of hammerhead ribozymes as anti-viral molecules. Curr. Med. Chem. 8: 10 (2001), 1181–7CrossRefGoogle ScholarPubMed
Dornburg, R. & Pomerantz, R. J.Human Immunodeficiency Virus-1 gene therapy: promise for the future. Adv. Pharmacol. 49 (2000), 229–61CrossRefGoogle ScholarPubMed
Baeuerle, P. A. & Baltimore, D.A 65-kappaD subunit of active NF-kappaB is required for inhibition of NF-kappaB by I kappaB. Genes Dev. 3: 11 (1989), 1689–98CrossRefGoogle ScholarPubMed
Zeichner, S. L., Hirka, G., Andrews, P. W. & Alwine, J. C.Differentiation-dependent human immunodeficiency virus long terminal repeat regulatory elements active in human teratocarcinoma cells. J. Virol. 66: 4 (1992), 2268–73Google ScholarPubMed
He, G. & Margolis, D. M.Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (Human Immunodeficiency Virus-1) by the Human Immunodeficiency Virus-1 repressor YY1 and Human Immunodeficiency Virus-1 activator Tat. Mol. Cell Biol. 22: 9 (2002), 2965–73CrossRefGoogle ScholarPubMed
El Kharroubi, A., Piras, G., Zensen, R. & Martin, M. A.Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter. Mol. Cell Biol. 18: 5 (1998), 2535–44CrossRefGoogle ScholarPubMed
Benkirane, M., Chun, R. F., Xiao, H.. Activation of integrated provirus requires histone acetyltransferase. p300 and P/CAF are coactivators for Human Immunodeficiency Virus-1 Tat. J. Biol. Chem. 273: 38 (1998), 24898–905CrossRefGoogle Scholar
Selby, M. J. & Peterlin, B. M.Trans-activation by Human Immunodeficiency Virus-1 Tat via a heterologous Ribonucleic Acid binding protein. Cell 62: 4 (1990), 769–76
Berkhout, B., Gatignol, A., Rabson, A. B. & Jeang, K. T.Transactivation Responsive-independent activation of the Human Immunodeficiency Virus-1 (pg 25): evidence that tat requires specific regions of the promoter. Cell 62: 4 (1990), 757–67CrossRefGoogle Scholar
Berkhout, B., Silverman, R. H. & Jeang, K. T.Tat trans-activates the human immunodeficiency virus through a nascent Ribonucleic Acid target. Cell 59: 2 (1989), 273–82CrossRefGoogle Scholar
Zhu, Y., Pe'ery, T., Peng, J.. Transcription elongation factor P-TEFb is required for Human Immunodeficiency Virus-1 tat transactivation in vitro. Genes Dev. 11: 20 (1997), 2622–32CrossRefGoogle ScholarPubMed
Peng, J., Zhu, Y., Milton, J. T. & Price, D. H.Identification of multiple cyclin subunits of human P-TEFb. Genes Dev. 12: 5 (1998), 755–62CrossRefGoogle ScholarPubMed
Wei, P., Garber, M. E., Fang, S. M., Fischer, W. H. & Jones, K. A.A novel CDK9-associated C-type cyclin interacts directly with Human Immunodeficiency Virus-1 Tat and mediates its high-affinity, loop-specific binding to Transactivation Responsive Ribonucleic Acid. Cell 92: 4 (1998), 451–62CrossRefGoogle Scholar
Parada, C. A. & Roeder, R. G.Enhanced processivity of Ribonucleic Acid polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 384: 6607 (1996), 375–8CrossRefGoogle ScholarPubMed
Yedavalli, V. S., Benkirane, M. & Jeang, K. T.Tat and trans-activation-responsive (Transactivation Responsive) Ribonucleic Acid-independent induction of Human Immunodeficiency Virus-1 long terminal repeat by human and murine cyclin T1 requires Sp1. J. Biol. Chem. 278: 8 (2003), 6404–10CrossRefGoogle Scholar
Barillari, G., Sgadari, C., Fiorelli, V.. The Tat protein of human immunodeficiency virus type-1 promotes vascular cell growth and locomotion by engaging the alpha5beta1 and alphavbeta3 integrins and by mobilizing sequestered basic fibroblast growth factor. Blood 94: 2 (1999), 663–72Google ScholarPubMed
Xiao, H., Neuveut, C., Tiffany, H. L.. Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by Human Immunodeficiency Virus-1. Proc. Natl. Acad. Sci. U. S. A. 97: 21 (2000), 11466–71CrossRefGoogle Scholar
Nath, A., Conant, K., Chen, P., Scott, C. & Major, E. O.Transient exposure to Human Immunodeficiency Virus-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon. J. Biol. Chem. 274: 24 (1999), 17098–102CrossRefGoogle ScholarPubMed
Mischiati, C., Jeang, K. T., Feriotto, G.. Aromatic polyamidines inhibiting the Tat-induced Human Immunodeficiency Virus-1 transcription recognize structured Transactivation Responsive-Ribonucleic Acid. Antisense Nucleic Acid Drug Dev 11: 4 (2001), 209–17CrossRefGoogle Scholar
Chao, S. H., Fujinaga, K., Marion, J. E.. Flavopiridol inhibits P-TEFb and blocks Human Immunodeficiency Virus-1 replication. J. Biol. Chem. 275: 37 (2000), 28345–8CrossRefGoogle Scholar
Pollard, V. W. & Malim, M. H.The Human Immunodeficiency Virus-1 Rev protein. Annu. Rev. Microbiol. 52 (1998), 491–532CrossRefGoogle Scholar
Malim, M. H., Tiley, L. S., McCarn, D. F., Rusche, J. R., Hauber, J. & Cullen, B. R.Human Immunodeficiency Virus-1 structural gene expression requires binding of the rev trans-activator sequence to its target Ribonucleic Acid sequence. Cell 60 (1990), 675–83CrossRefGoogle Scholar
Malim, M. H., Hauber, J., Le, S.-Y., Maizel, J. V. & Cullen, B. R.The Human Immunodeficiency Virus rev transactivator acts through a structured target sequence to activate nuclear export of unspliced viral mRibonucleic Acid. Nature 338 (1989), 254–7CrossRefGoogle Scholar
Felber, B. K., Hadzopoulou-Cladaras, M., Cladaras, C., Copeland, T. & Pavlakis, G. N.rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRibonucleic Acid. Proc. Natl. Acad. Sci. U. S. A. 86: 5 (1989), 1495–9CrossRefGoogle Scholar
Purcell, D. F. & Martin, M. A.Alternative splicing of human immunodeficiency virus type 1 mRibonucleic Acid modulates viral protein expression, replication, and infectivity. J. Virol. 67: 11 (1993), 6365–78Google Scholar
Zapp, M. L., Hope, T. J., Parslow, T. G. & Green, M. R.Oligomerization and Ribonucleic Acid binding domains of the type 1 human immunodeficiency virus Rev protein: a dual function for an arginine-rich binding motif. Proc. Natl. Acad. Sci. U. S. A. 88: 17 (1991), 7734–8CrossRefGoogle ScholarPubMed
Malim, M. H., Bohnlein, S., Hauber, J. & Cullen, B. R.Functional dissection of the Human Immunodeficiency Virus-1 Rev trans-activator — derivation of a trans-dominant repressor of Rev function. Cell 58: 1 (1989), 205–14CrossRefGoogle ScholarPubMed
Malim, M. H. & Cullen, B. R.Human Immunodeficiency Virus-1 structural gene expression requires the binding of multiple Rev monomers to the viral Rev Response Element: implications for Human Immunodeficiency Virus-1 latency. Cell 65: 2 (1991), 241–8CrossRefGoogle Scholar
Askjaer, P., Jensen, T. H., Nilsson, J., Englmeier, L. & Kjems, J.The specificity of the CRM1-Rev nuclear export signal interaction is mediated by RanGTP. J. Biol. Chem. 273: 50 (1998), 33414–22CrossRefGoogle ScholarPubMed
Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I.CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90 (1997), 1051–60CrossRefGoogle ScholarPubMed
Gorlich, D. & Mattaj, I. W.Nucleocytoplasmic transport. Science 271: 5255 (1996), 1513–18CrossRefGoogle ScholarPubMed
Henderson, B. R. & Percipalle, P.Interactions between Human Immunodeficiency Virus Rev and nuclear import and export factors: the Rev nuclear localisation signal mediates specific binding to human importin-beta. J. Mol. Biol. 274: 5 (1997), 693–707CrossRefGoogle ScholarPubMed
Zapp, M. L., Stern, S. & Green, M. R.Small molecules that selectively block Ribonucleic Acid binding of Human Immunodeficiency Virus-1 Rev protein inhibit Rev function and viral production. Cell 74: 6 (1993), 969–78CrossRefGoogle ScholarPubMed
Ranga, U., Woffendin, C., Verma, S.. Enhanced T cell engraftment after retroviral delivery of an antiviral gene in Human Immunodeficiency Virus-infected individuals. Proc. Natl. Acad. Sci. U. S. A. 95: 3 (1998), 1201–6CrossRefGoogle Scholar
Hallenberger, S., Bosch, V., Angliker, H., Shaw, E., Klenk, H. D. & Garten, W.Inhibition of furin-mediated cleavage activation of Human Immunodeficiency Virus-1 glycoprotein gp160. Nature 360: 6402 (1992), 358–61CrossRefGoogle ScholarPubMed
Decroly, E., Wouters, S., Di Bello, C., Lazure, C., Ruysschaert, J. M. & Seidah, N. G.Identification of the paired basic convertases implicated in Human Immunodeficiency Virus gp160 processing based on in vitro assays and expression in Cluster of Differentiation4(+) cell lines [published erratum appears in J. Biol. Chem.272: 13 (1997 Mar 28), 8836. J. Biol. Chem. 271: 48 (1996), 30442–50CrossRefGoogle Scholar
Ogert, R. A., Lee, M. K., Ross, W., Buckler-White, A., Martin, M. A. & Cho, M. W.N-linked glycosylation sites adjacent to and within the V1/V2 and the V3 loops of dualtropic human immunodeficiency virus type 1 isolate DH12 gp120 affect coreceptor usage and cellular tropism. J. Virol. 75: 13 (2001), 5998–6006CrossRefGoogle ScholarPubMed
Mori, K., Yasutomi, Y., Ohgimoto, S.. Quintuple deglycosylation mutant of simian immunodeficiency virus Simian Immunodeficiency Virusmac239 in rhesus macaques: robust primary replication, tightly contained chronic infection, and elicitation of potent immunity against the parental wild-type strain. J. Virol. 75: 9 (2001),; 4023–8CrossRefGoogle Scholar
Reitter, J. N., Means, R. E. & Desrosiers, R. C.A role for carbohydrates in immune evasion in Acquired Immune Deficiency Syndrome. Nat. Med. 4: 6 (1998), 679–84CrossRefGoogle Scholar
Schubert, U., Anton, L. C., Bacik, I., et al. Cluster of Differentiation4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteosomes and the ubiquitin-conjugating pathway. J. Virol. 72: 3 (1998), 2280–8Google Scholar
Willey, R. L., Maldarelli, F., Martin, M. A. & Strebel, K.Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of Cluster of Differentiation4. J. Virol. 66: 12 (1992), 7193–200Google Scholar
Conte, M. R. & Matthews, S.Retroviral matrix proteins: a structural perspective. Virology 246: 2 (1998), 191–8CrossRefGoogle ScholarPubMed
Ono, A., Orenstein, J. M. & Freed, E. O.Role of the Gag matrix domain in targeting human immunodeficiency virus type 1 assembly. J. Virol. 74: 6 (2000), 2855–66CrossRefGoogle ScholarPubMed
Ono, A. & Freed, E. O.Plasma membrane rafts play a critical role in Human Immunodeficiency Virus-1 assembly and release. Proc. Natl. Acad. Sci. U. S. A. 98: 24 (2001), 13925–30CrossRefGoogle ScholarPubMed
Nguyen, D. H. & Hildreth, J. E.Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J. Virol. 74: 7 (2000), 3264–72CrossRefGoogle ScholarPubMed
Zimmerman, C., Klein, K. C., Kiser, P. K.. Identification of a host protein essential for assembly of immature Human Immunodeficiency Virus-1 capsids. Nature 415: 6867 (2002), 88–92CrossRefGoogle Scholar
Gamble, T. R., Yoo, S., Vajdos, F. F.. Structure of the carboxyl-terminal dimerization domain of the Human Immunodeficiency Virus-1 capsid protein. Science 278: 5339 (1997), 849–53CrossRefGoogle Scholar
Franke, E. K., Yuan, H. E. & Luban, J.Specific incorporation of cyclophilin A into Human Immunodeficiency Virus-1 virions. Nature 372: 6504 (1994), 359–62CrossRefGoogle Scholar
Grattinger, M., Hohenberg, H., Thomas, D., Wilk, T., Muller, B. and Krausslich, H. G.In vitro assembly properties of wild-type and cyclophilin-binding defective human immunodeficiency virus capsid proteins in the presence and absence of cyclophilin A. Virology257: 1 (1999), 247–60CrossRefGoogle ScholarPubMed
Berkowitz, R., Fisher, J. & Goff, S. P.Ribonucleic Acid packaging. Curr. Top. Microbiol. Immunol. 214 (1996), 177–218Google Scholar
Basrur, V., Song, Y., Mazur, S. J.. Inactivation of Human Immunodeficiency Virus-1 nucleocapsid protein P7 by pyridinioalkanoyl thioesters. Characterization of reaction products and proposed mechanism of action. J. Biol. Chem. 275: 20 (2000), 14890–7CrossRefGoogle ScholarPubMed
Huang, M., Maynard, A., Turpin, J. A.. Anti-Human Immunodeficiency Virus agents that selectively target retroviral nucleocapsid protein zinc fingers without affecting cellular zinc finger proteins. J. Med. Chem. 41: 9 (1998), 1371–81CrossRefGoogle ScholarPubMed
Pornillos, O., Garrus, J. E. & Sundquist, W. I.Mechanisms of enveloped Ribonucleic Acid virus budding. Trends. Cell Biol. 12: 12 (2002), 569–79CrossRefGoogle ScholarPubMed
Demirov, D. G., Ono, A., Orenstein, J. M. & Freed, E. O.Overexpression of the N-terminal domain of TSG101 inhibits Human Immunodeficiency Virus-1 budding by blocking late domain function. Proc. Natl. Acad. Sci. U. S. A. 99: 2 (2002), 955–60CrossRefGoogle ScholarPubMed
Garrus, J. E., Schwedler, U. K., Pornillos, O. W.. Tsg101 and the vacuolar protein sorting pathway are essential for Human Immunodeficiency Virus-1 budding. Cell 107: 1 (2001), 55–65CrossRefGoogle ScholarPubMed
Freed, E. O. & Martin, M. A.Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions. J. Virol. 70 (1995), 341–51Google Scholar
Bour, S., Schubert, U. & Strebel, K.The human immunodeficiency virus type 1 Vpu protein specifically binds to the cytoplasmic domain of Cluster of Differentiation4: implications for the mechanism of degradation. J. Virol. 69: 3 (1995), 1510–20Google Scholar
Geraghty, R. J. & Panganiban, A. T.Human immunodeficiency virus type 1 Vpu has a Cluster of Differentiation4- and an envelope glycoprotein-independent function. J. Virol. 67: 7 (1993), 4190–4Google Scholar
Khan, M. A., Aberham, C., Kao, S.. Human immunodeficiency virus type 1 Virion Infectivity Factor protein is packaged into the nucleoprotein complex through an interaction with viral genomic Ribonucleic Acid. J. Virol. 75: 16 (2001), 7252–65CrossRefGoogle Scholar
Sheehy, A. M., Gaddis, N. C., Choi, J. D. & Malim, M. H.Isolation of a human gene that inhibits Human Immunodeficiency Virus-1 infection and is suppressed by the viral Virion Infectivity Factor protein. Nature 418: 6898 (2002), 646–50CrossRefGoogle Scholar
Cohen, E. A., Dehni, G., Sodroski, J. G. & Haseltine, W. A.Human immunodeficiency virus vpr product is a virion-associated regulatory protein. J. Virol. 64: 6 (1990), 3097–9Google ScholarPubMed
Felzien, L. K., Woffendin, C., Hottiger, M. O., Subbramanian, R. A., Cohen, E. A. & Nabel, G. J.Human Immunodeficiency Virus transcriptional activation by the accessory protein, VPR, is mediated by the p300 co-activator. Proc. Natl. Acad. Sci. U. S. A. 95: 9 (1998), 5281–6CrossRefGoogle ScholarPubMed
He, J., Choe, S., Walker, R., Di Marzio, P., Morgan, D. O. & Landau, N. R.Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J. Virol. 69: 11 (1995), 6705–11Google ScholarPubMed
Kestler, H. W. D., Ringler, D. J., Mori, K.. Importance of the nef gene for maintenance of high virus loads and for development of Acquired Immune Deficiency Syndrome. Cell 65: 4 (1991), 651–62CrossRefGoogle Scholar
Deacon, N. J., Tsykin, A., Solomon, A.. Genomic structure of an attenuated quasi species of Human Immunodeficiency Virus-1 from a blood transfusion donor and recipients. Science 270: 5238 (1995), 988–91CrossRefGoogle ScholarPubMed
Baba, T. W., Jeong, Y. S., Pennick, D., Bronson, R., Greene, M. F. & Ruprecht, R. M.Pathogenicity of live, attenuated Simian Immunodeficiency Virus after mucosal infection of neonatal macaques. Science 267: 5205 (1995), 1820–5CrossRefGoogle ScholarPubMed
Garcia, J. V. & Miller, A. D.Serine phosphorylation-independent downregulation of cell-surface Cluster of Differentiation4 by nef. Nature 350: 6318 (1991), 508–11CrossRefGoogle Scholar
Piguet, V., Gu, F., Foti, M.. Nef-induced Cluster of Differentiation4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of beta-COP in endosomes. Cell 97: 1 (1999), 63–73CrossRefGoogle Scholar
Collette, Y., Dutartre, H., Benziane, A.. Physical and functional interaction of Nef with Lck. Human Immunodeficiency Virus-1 Nef-induced T-cell signaling defects. J. Biol. Chem. 271: 11 (1996), 6333–41CrossRefGoogle ScholarPubMed
Schwartz, O., Marechal, V., Gall, S., Lemonnier, F. & Heard, J. M.Endocytosis of major histocompatibility complex class I molecules is induced by the Human Immunodeficiency Virus-1 Nef protein. Nat. Med. 2: 3 (1996), 338–4CrossRefGoogle Scholar
Collins, K. L., Chen, B. K., Kalams, S. A., Walker, B. D. & Baltimore, D.Human Immunodeficiency Virus-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391: 6665 (1998), 397–401CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • HIV basic virology for clinicians
    • By Steven L. Zeichner, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
  • Edited by Steven L. Zeichner, National Cancer Institute, Bethesda, Maryland, Jennifer S. Read, National Cancer Institute, Bethesda, Maryland
  • Book: Textbook of Pediatric HIV Care
  • Online publication: 03 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544798.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • HIV basic virology for clinicians
    • By Steven L. Zeichner, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
  • Edited by Steven L. Zeichner, National Cancer Institute, Bethesda, Maryland, Jennifer S. Read, National Cancer Institute, Bethesda, Maryland
  • Book: Textbook of Pediatric HIV Care
  • Online publication: 03 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544798.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • HIV basic virology for clinicians
    • By Steven L. Zeichner, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
  • Edited by Steven L. Zeichner, National Cancer Institute, Bethesda, Maryland, Jennifer S. Read, National Cancer Institute, Bethesda, Maryland
  • Book: Textbook of Pediatric HIV Care
  • Online publication: 03 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544798.005
Available formats
×