Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T13:39:23.002Z Has data issue: false hasContentIssue false

4 - Poly(ethylene terephthalate) nanocomposites using nanoclays modified with thermally stable surfactants

from Part I - Thermal stability

Published online by Cambridge University Press:  05 August 2011

Get access

Summary

Introduction

The term “nanocomposite” is widely used to describe a very broad range of materials, where one of the phases has a submicrometer dimension . In the case of polymer-based nanocomposites, this typically involves the incorporation of “nano” fillers with one (platelets), two (fibers, tubes), or all three dimensions at the submicrometer scale. However, strictly speaking, simply using nanometer-scaled fillers is not sufficient for obtaining genuine/true nanocomposites: these fillers must also be well dispersed down to individual particles and give rise to intrinsically new properties, which are not present in the respective macroscopic composites or the pure components. In this chapter, we shall use a broader definition, encompassing also “nanofilled polymer composites”, where – even without complete dispersion or in the absence of any new/novel functionalities – there exist substantial concurrent enhancements of multiple properties (for example, mechanical, thermal, thermomechanical, barrier, and flammability). Further, we shall limit our discussion to one example, focusing on poly(ethylene terephthalate) (PET) with mica-type layered aluminosilicates.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pinnavaia, T. J.Beall, G. W.Polymer–Clay NanocompositesWest Sussex, UKWiley 2000Google Scholar
Utracki, L.Clay-Containing Polymeric NanocompositesShropshire, UKRapra Tech 2004Google Scholar
Mai, Y.Yu, Z.Polymer NanocompositesCambridge, UKWoodhead 2006CrossRefGoogle Scholar
Morgan, A. B.Wilkie, C. A.Polymer Nanocomposite FlammabilityHoboken, NJWiley 2006Google Scholar
Manias, E.Nanocomposites – Stiffer by designNature Materials 6 2007 9CrossRefGoogle ScholarPubMed
Theng, B. K. G.Formation and Properties of Clay–Polymer ComplexesAmsterdamElsevier 1979Google Scholar
Theng, B. K. G.Chemistry of Clay–Organic ReactionsNew YorkWiley 1974Google Scholar
Kojima, Y.Usuki, A.Kawasumi, M.Okada, A.Fukushima, Y.Kurauchi, T. T.Kamigaito, O.Synthesis and mechanical properties of nylon-6/clay hybridJournal of Materials Research 8 1993 1179CrossRefGoogle Scholar
Kojima, Y.Usuki, A.Kawasumi, M.Okada, A.Kurauchi, T. T.Kamigaito, O.Synthesis of nylon-6/clay hybrid by montmorillonite intercalated with ɛ-caprolactamJournal of Polymer Science, Part A: Polymer Chemistry 31 1993 983CrossRefGoogle Scholar
Vaia, R. A.Ishii, H.Giannelis, E. P.Synthesis and properties of 2-dimensional nanostructures by direct intercalation of polymer melts in layered silicatesChemistry of Materials 5 1993 1694CrossRefGoogle Scholar
Gilman, J.Jackson, C.Morgan, A.Harris, R.Manias, E.Giannelis, E.Wuthenow, M.Hilton, D.Phillips, S.Flammability properties of polymer/layered-silicate nanocomposites: Polypropylene and polystyrene nanocompositesChemistry of Materials 12 2000 1866CrossRefGoogle Scholar
LeBaron, P. C.Wang, Z., T. J.Polymer-layered silicate nanocomposites: An overviewApplied Clay Science 15 1999 11CrossRefGoogle Scholar
Giannelis, E. P.Krishnamoorti, R.Manias, E.Polymer-silicate nanocomposites: Model systems for confined polymers and polymer brushesAdvances in Polymer Science 138 1999 107CrossRefGoogle Scholar
Alexandre, M.Dubois, P.Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materialsMaterials Science and Engineering R: Reports 28 2000 1CrossRefGoogle Scholar
Ray, S. S.Okamoto, M.Polymer/596 layered silicate nanocomposites: A review from preparation to processingProgress in Polymer Science 28 2003 1539Google Scholar
Manias, E.Touny, A.Wu, L.Strawhecker, K.Lu, B.Chung, T. C.Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials propertiesChemistry of Materials 13 2001 3516CrossRefGoogle Scholar
Vaia, R. A.Giannelis, E. P.Lattice model of polymer melt intercalation in organically-modified layered silicatesMacromolecules 30 1997 7990CrossRefGoogle Scholar
Vaia, R. A.Giannelis, E. P.Polymer melt intercalation in organically modified layered silicates: Model predictions and experimentMacromolecules 30 1997 8000CrossRefGoogle Scholar
Balazs, A. C.Singh, C.Zhulina, E.Modeling the interactions between polymers and clay surfaces through self-consistent field theoryMacromolecules 31 1998 8370CrossRefGoogle Scholar
Leroux, F.Besse, J.Polymer interleaved layered double hydroxide: A new emerging class of nanocompositesChemistry of Materials 13 2001 3507CrossRefGoogle Scholar
Xie, X. L.Mai, Y.-W.Zhou, X. P.Dispersion and alignment of carbon nanotubes in polymer matrix: A reviewMaterials Science and Engineering R: Reports 49 2005 89CrossRefGoogle Scholar
Ou, C.Ho, M.Lin, J.Synthesis and characterization of poly(ethylene terephthalate) nanocomposites with organoclayJournal of Applied Polymer Science 91 2004 140CrossRefGoogle Scholar
Chang, J.Kim, S.Joo, Y.Im, S.Poly(ethylene terephthalate) nanocomposites by in situ interlayer polymerization: The thermo-mechanical properties and morphology of the hybrid fibersPolymer 45 2004 919CrossRefGoogle Scholar
Davis, C. H.Mathias, L. J.Gilman, J. W.Schiraldi, D. A.Shields, J. R.Trulove, P. C.Sutto, T. E.de Long, H. C.Effects of melt-processing conditions on the quality of poly(ethylene terephthalate) montmorillonite clay nanocompositesJournal of Polymer Science, Part B: Polymer Physics 40 2002 2661CrossRefGoogle Scholar
Costache, M. C.Heidecker, M. J.Manias, E.Wilkie, C. A.Preparation and characterization of poly(ethylene terephthalate)/clay nanocomposites by melt blending using thermally stable surfactantsPolymers for Advanced Technologies 17 2006 764CrossRefGoogle Scholar
Wang, Z. M.Chung, T. C.Gilman, J. W.Manias, E.Melt-processable syndiotactic polystyrene/montmorillonite nanocompositesJournal of Polymer Science, Part B: Polymer Physics 41 2003 3173CrossRefGoogle Scholar
MacKenzie, R. C.The Differential Thermal Investigation of ClaysLondonMineralogical Society 1957Google Scholar
van Oss, C. J.Chaudhury, M. K.Good, R. J.Interfacial Lifschitz–van der Waals and polar interactions in macroscopic systemsChemical Reviews 88 1988 927CrossRefGoogle Scholar
van Oss, C. J.Interfacial Forces in Aqueous MediaNew YorkDekker 1994Google Scholar
Wu, W.Giese, R. F.van Oss, C. J.Evaluation of the Lifshitz–van der Waals/acid–base approach to determine surface tension componentsLangmuir 11 1995 379CrossRefGoogle Scholar
Fox, D. M.Awad, W. H.Gilman, J. W.Maupin, P. H.de Long, H. C.Trulove, P. C.Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium saltsGreen Chemistry 5 2003 724CrossRefGoogle Scholar
Gilman, J. W.Awad, W. H.Davis, R. D.Shields, J., R. H. H.Davis, C.Morgan, A. B.Sutto, T. E.Callahan, J.Trulove, P. C.DeLong, H. C.Polymer/layered-silicate nanocomposites from thermally stable trialkylimidazolium-treated montmorilloniteChemistry of Materials 14 2002 3776CrossRefGoogle Scholar
Monemian, S.Goodarzi, V.Zahedi, P.Angaji, M.PET/imidazolium based OMMT nanocomposites via in situ polymerization: Morphological, thermal, and nonisothermal crystallization studiesAdvances in Polymer Technology 26 2007 247CrossRefGoogle Scholar
Vassiliou, A.Chrissafis, K.Bikiaris, D.Thermal degradation kinetics of in situ prepared PET nanocomposites with acid-treated multi-walled carbon nanotubesJournal of Thermal Analysis and Calorimetry 2010CrossRefGoogle Scholar
Langat, J.Bellayer, S.Hudrlik, P.Hudrlik, A.Maupin, P. H.Gilman, Sr J. W.Raghavan, D.Synthesis of imidazolium salts and their application in epoxy montmorillonite nanocompositesPolymer 47 2006 6698CrossRefGoogle Scholar
Modesti, M.Besco, S.Lorenzetti, A.Zammarano, M.Causin, V.Marega, C.Gilman, J. W.Fox, D. M.Trulove, P. C.de Long, H. C.Maupin, P. H.Imidazolium-modified clay-based ABS nanocomposites: A comparison between melt-blending and solution-sonication processesPolymers for Advanced Technologies 19 2008 1576Google Scholar
Modesti, M.Besco, S.Lorenzetti, A.Causin, V.Marega, C.Gilman, J. W.Fox, D. M.Trulove, P. C.De Long, H. C.Zammarano, M.ABS/clay nanocomposites obtained by a solution technique: Influence of clay organic modifiersPolymer Degradation and Stability 92 2007 2206CrossRefGoogle Scholar
Fox, D. M.Maupin, P. H.Harris, Jr. R. H.Gilman, J. W.Eldred, D. V.Katsoulis, D.Trulove, P. C.De Long, H. C.Use of a polyhedral oligomeric silsesquioxane (POSS)–imidazolium cation as an organic modifier for montmorilloniteLangmuir 23 2007 7707CrossRefGoogle ScholarPubMed
Bellayer, S.Gilman, J.Eidelman, N.Bourbigot, S.Flambard, X.Fox, D.De Long, H.Trulove, P.Preparation of homogeneously dispersed multiwalled carbon nanotube/polystyrene nanocomposites via melt extrusion using trialkyl imidazolium compatibilizerAdvanced Functional Materials 15 2005 910CrossRefGoogle Scholar
Vaia, R. A.Liu, W. D.X-ray powder diffraction of polymer/layered silicate nanocomposites: Model and practiceJournal of Polymer Science, Part B: Polymer Physics 40 2002 1590CrossRefGoogle Scholar
Vaia, R. A.Liu, W. D.Koerner, H.Analysis of small-angle scattering of suspensions of organically modified montmorillonite: Implications to phase behavior of polymer nanocompositesJournal of Polymer Science, Part B: Polymer Physics 41 2003 3214CrossRefGoogle Scholar
Hanley, H. J. M.Muzny, C. D.Ho, D. L.Glinka, C. J.Manias, E.A SANS study of organoclay dispersionsInternational Journal of Thermophysics 22 2001 1435CrossRefGoogle Scholar
Morgan, A.Gilman, J.Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: A comparative studyJournal of Applied Polymer Science 87 2003 1329CrossRefGoogle Scholar
Heidecker, M. J.Nakajima, H.Manias, E.Structure and properties of PET/montmorillonite nanocomposites prepared by melt-blendingPolymers for Advanced Technologies
Chen, Z.Luo, P.Fu, Q.Preparation and properties of organo-modifier free PET/MMT nanocomposites via monomer intercalation and in situ polymerizationPolymers for Advanced Technologies 20 2009 916CrossRefGoogle Scholar
Xu, L.Nakajima, H.Manias, E.Krishnamoorti, R.Tailored nanocomposites of polypropylene with layered silicatesMacromolecules 42 2009 3795CrossRefGoogle Scholar
Chigwada, G.Wang, D.Wilkie, C.Polystyrene nanocomposites based on quinolinium and pyridinium surfactantsPolymer Degradation and Stability 91 2006 848CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×