Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T10:07:28.344Z Has data issue: false hasContentIssue false

3 - Tick salivary glands: the physiology of tick water balance and their role in pathogen trafficking and transmission

Published online by Cambridge University Press:  21 August 2009

A. S. Bowman
Affiliation:
School of Biological Sciences, University of Aberdeen
A. Ball
Affiliation:
School of Biological Sciences University of Aberdeen Tillydrone Avenue Aberdeen AB24 2TZ UK
J. R. Sauer
Affiliation:
Department of Entomology and Plant Pathology, 127 Noble Research Center, Oklahoma State University, Stillwater, Oklahoma 74078 USA
Alan S. Bowman
Affiliation:
University of Aberdeen
Patricia A. Nuttall
Affiliation:
Centre for Ecology and Hydrology, Swindon
Get access

Summary

INTRODUCTION

Almost two millennia ago, the wonders of tick osmoregulation and excretion were commented upon by Pliny the Elder (AD 23–79) in his 37-volume Historia Naturalis when he wrote: ‘a tick simply filled to bursting point with its victim's blood and then died because it had no anus’ (from Hillyard, 1996). A millennium and a half later, the Reverend Dr Thomas Moufet (1553–1604) also noted in his Insectorum sive Minimorum Animalium Theatrum that ‘[Ricinus] is filled with food abundantly and yet there is no passage for any excrement’. Quite correctly, these ancient natural historians observed the tremendous increase in body size of feeding female ticks and then suddenly these engorged ticks would detach and fall to the ground, barely able to move with their enormous rounded bodies, and unwilling to reattach. However, the conclusions of Pliny and Moufet were incorrect that this apparent onset of tick ill-health was due to an inability to excrete caused by the lack of anus or that these inactive engorged females would die as a result. Indeed, if Pliny and Moufet had continued their observations of ticks for a few weeks, they would have seen that these engorged females (most likely Ixodes ricinus) would deposit several thousand eggs before dying, thus completing the life cycle. Ticks do possess an anus and excrete a small amount of nitrogenous waste (mainly guanine).

Type
Chapter
Information
Ticks
Biology, Disease and Control
, pp. 73 - 91
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aljamali, M. N., Bior, A. D., Sauer, J. R. & Essenberg, R. C. (2003). RNA interference in ticks: a study using histamine binding protein dsRNA in the female tick Amblyomma americanum. Insect Molecular Biology 12, 299–305.CrossRefGoogle ScholarPubMed
Aljamali, M. N., Bowman, A. S., Dillwith, J. W., et al. (2002). Identity and synthesis of prostaglandins in the lone star tick, Amblyomma americanum (L.), as assessed by radio-immunoassay and gas chromatography/mass spectrometry. Insect Biochemistry and Molecular Biology 32, 331–341.CrossRefGoogle Scholar
Anyomi, F. M., Bior, A. D., Essenberg, R. C. & Sauer, J. R. (2006). Gene expression in male tick salivary glands is affected by feeding in the presence of females. Archives of Insect Biochemistry and Physiology 63, 159–168.CrossRefGoogle ScholarPubMed
Barker, D. M., Ownby, C. L., Krolak, J. M., Claypool, P. L. & Sauer, J. R. (1984). The effects of attachment, feeding and mating on the morphology of the type I alveolus of the salivary glands of the lone star tick, Amblyomma americanum (L.). Journal of Parasitology 70, 99–113.CrossRefGoogle Scholar
Binnington, K. C. (1978). Sequential changes in salivary gland structure during attachment and feeding of the cattle tick, Boophilus microplus. International Journal for Parasitology 8, 97–115.CrossRefGoogle ScholarPubMed
Binnington, K. C. & Kemp, D. H. (1980). Role of tick salivary glands in feeding and disease transmission. Advances in Parasitology 18, 315–319.CrossRefGoogle ScholarPubMed
Binnington, K. C. & Stone, B. F. (1977). Distribution of catecholamines in the cattle tick Boophilus microplus. Comparative Biochemistry and Physiology 58C, 21–28.Google Scholar
Bior, A. D., Essenberg, R. C. & Sauer, J. R. (2002). Comparison of differentially expressed genes in the salivary glands of male ticks, Amblyomma americanum and Dermacentor andersoni. Insect Biochemistry and Molecular Biology 32, 645–655.CrossRefGoogle ScholarPubMed
Borgnia, M., Nielsen, S., Engel, A. & Acre, P. (1999). Cellular and molecular biology of the aquaporin water channels. Annual Review of Biochemistry 68, 425–458.CrossRefGoogle ScholarPubMed
Bowman, A. S., Dillwith, J. W., Madden, R. D. & Sauer, J. R. (1995 b). Uptake, incorporation and redistribution of arachidonic acid in isolated salivary glands of the lone star tick. Insect Biochemistry and Molecular Biology 25, 441–447.CrossRefGoogle ScholarPubMed
Bowman, A. S., Dillwith, J. W., Madden, R. D. & Sauer, J. R. (1995 c). Regulation of free arachidonic acid levels in isolated salivary glands from the lone star tick: a role for dopamine. Archives of Insect Biochemistry and Physiology 29, 309–327.CrossRefGoogle ScholarPubMed
Bowman, A. S., Dillwith, J. W. & Sauer, J. R. (1996). Tick salivary prostaglandins: presence, origin and significance. Parasitology Today 12, 388–396.CrossRefGoogle ScholarPubMed
Bowman, A. S., Sauer, J. R., Neese, P. A. & Dillwith, J. W. (1995 a). Origin of arachidonic acid in the salivary glands of the lone star tick, Amblyomma americanum. Insect Biochemistry and Molecular Biology 25, 225–233.CrossRefGoogle Scholar
Bowman, A. S., Sauer, J. R., Shipley, M. M., et al. (1993). Tick salivary prostaglandins: their precursors and biosynthesis. In Host-Regulated Developmental Mechanisms in Vector Arthropods, vol. 3, eds. Borovsky, D. & Spielman, A., pp. 169–177. Vero Beach, FL: University of Florida Institute of Food and Agriculture.Google Scholar
Bowman, A. S., Sauer, J. R., Zhu, K. & Dillwith, J. W. (1995 d). Biosynthesis of salivary prostaglandins in the lone star tick, Amblyomma americanum. Insect Biochemistry and Molecular Biology 25, 735–741.CrossRefGoogle ScholarPubMed
Chinery, W. A. (1965). Studies on the various glands of the tick, Haemophysalis spingera Neumann 1987. III. The salivary glands. Acta Tropica 22, 321–349.Google Scholar
Coleman, R. A., Kennedy, I., Humphrey, P. P. A., Bunce, K. & Lumley, P. (1990). Prostanoids and their receptors. In Comprehensive Medicinal Chemistry, vol. 3, Membranes and Receptors, ed. Emmett, J. C., pp. 643–714. Oxford, UK: Pergamon Press.Google Scholar
Coons, L. B. & Alberti, G. (1999). The Acari – Ticks. In Microscopic Anatomy of Invertebrates, vol. 8B, Chelicerate Arthropoda, eds. Harrison, F. W. & Foelix, R., pp. 267–514. New York: Wiley-Liss.Google Scholar
Coons, L. B. & Lamoreaux, W. J. (1986). Developmental changes in the salivary glands of male and female Dermacentor variabilis (Say) during feeding. In Host-Regulated Developmental Mechanisms in Vector Arthropods, vol. 1, eds. Borovsky, D. & Spielman, A., pp. 86–92. Vero Beach, FL: University of Florida, Institute of Food and Agriculture.Google Scholar
Coons, L. B., Lessman, C. A., Ward, M. W., Berg, R. H. & Lamoreaux, W. J. (1994). Evidence of a myoepithelial cell in tick salivary glands. International Journal for Parasitology 24, 551–562.CrossRefGoogle ScholarPubMed
Coons, L. B. & Roshdy, M. A. (1981). Ultrastructure of granule secretion in salivary glands of Argas (Persicargas) arboreus during feeding. Zeitschrift für Parasitenkunde – Parasitology Research 65, 225–234.CrossRefGoogle Scholar
El Shoura, S. (1985). Ultrastructure of salivary glands of Ornithodorus (Ornithodorus) moubata (Ixodoidae: Argasidae). Journal of Morphology 186, 45–52.CrossRefGoogle Scholar
Fawcett, D. W., Binnington, K. C. & Voight, W. R. (1986). The cell biology of the ixodid tick salivary gland. In Morphology, Physiology and Behavioral Biology of Ticks, eds. Sauer, J. R. & Hair, J. A., pp. 22–45. Chichester, UK: Ellis Horwood.Google Scholar
Feldman-Muhsam, B., Borut, S. & Saliternik-Givant, S. (1970). Salivary secretion of the male tick during copulation. Journal of Insect Physiology 16, 1945–1949.CrossRefGoogle ScholarPubMed
Fingerle, V., Goettner, G., Gern, L., Wilske, B. & Schulte-Spechtel, U. (2007). Complementation of Borrelia afzelii OspC mutant highlights the crucial role of OspC for dissemination of Borrelia afzelii in Ixodes ricinus. International Journal of Medical Microbiology 287, 97–107.CrossRefGoogle Scholar
Freitas, D. R. J., Rosa, R. M., Moura, D. J., et al. (2007). Cell death during preoviposition period in Boophilus microplus tick. Veterinary Parasitology 144, 321–327.CrossRefGoogle ScholarPubMed
Gaede, H. & Knulle, W. (1997). On the mechanism of water vapour sorption from unsaturated atmospheres by ticks. Journal of Experimental Biology 200, 1491–1498.Google ScholarPubMed
Geppert, M., Goda, Y., Hammer, R. E., et al. (1994). Synaptotagmin I: a major calcium sensor for transmitter release at a central synapse. Cell 79, 717–727.CrossRefGoogle Scholar
Gill, H. S. & Walker, A. R. (1987). The salivary glands of Hyalomma anatolicum anatolicum: structural changes during attachment and feeding. International Journal for Parasitology 17, 1381–1392.CrossRefGoogle ScholarPubMed
Gregson, J. D. (1967). Observations on the movement of fluids in the vicinity of the mouthparts of naturally feeding Dermacentor andersoni Stiles. Parasitology 57, 1–8.CrossRefGoogle Scholar
Gresz, V., Kwon, T. H., Hurley, P. T., et al. (2001). Identification and localization of aquaporin water channels in human salivary glands. American Journal of Physiology 281, G247–G254.Google ScholarPubMed
Guo, X., Harmon, M. A., Laudet, V., Mangelsdorf, D. J. & Palmer, M. J. (1997). Isolation of a functional ecdysteroid receptor homologue from the ixodid tick, Amblyomma americanum (L.). Insect Biochemistry and Molecular Biology 27, 945–962.CrossRefGoogle Scholar
Guo, X., Xu, Q., Harmon, M., et al. (1998). Isolation of two functional retinoid X receptor subtypes from the ixodid tick, Amblyomma americanum (L.). Molecular and Cellular Endocrinology 139, 45–60.CrossRefGoogle Scholar
Harris, R. A. & Kaufman, W. R. (1981). Hormonal control of salivary gland degeneration in the ixodid tick, Amblyomma hebraeum. Journal of Insect Physiology 27, 241–248.CrossRefGoogle Scholar
Harris, R. A. & Kaufman, W. R. (1985). Ecdysteroids: possible candidates for the hormone which triggers salivary gland degeneration in the tick, Amblyomma hebraeum. Experientia 41, 740–741.CrossRefGoogle Scholar
Hechemy, K. E., Samsonoff, W. A., Harris, H. L. & McKee, M. (1992). Adherence and entry of Borrelia burgdorferi in Vero cells. Journal of Medical Microbiology 36, 229–238.CrossRefGoogle ScholarPubMed
Hillyard, P. D. (1996). Ticks of North-West Europe. London: Linnean Society.Google Scholar
Howell, C. J. (1966). Collection of salivary gland secretion from the argasid, Ornithodoros savignyi Audouin (1827) by use of a pharmacological stimulant. Journal of the South African Veterinary Medical Association 37, 36–39.Google Scholar
Hsu, M.-H. & Sauer, J. R. (1975). Ion and water balance in the feeding lone star tick. Comparative Biochemistry and Physiology 52A, 269–276.CrossRefGoogle Scholar
Ishikawa, Y. & Ishida, H. (2000). Aquaporin water channel in salivary glands. Japanese Journal of Pharmacology 83, 95–101.CrossRefGoogle ScholarPubMed
Jasik, K. & Buczek, A. (2004). Development of the salivary glands in embryos of Ixodes ricinus (Acari: Ixodidae). Experimental and Applied Acarology 32, 219–229.CrossRefGoogle Scholar
Karim, S., Essenberg, R. C., Dillwith, J. W.et al. (2002). Identification of SNARE and cell trafficking regulatory proteins in salivary glands of the lone star tick. Insect Biochemistry and Molecular Biology 32, 1711–1721.CrossRefGoogle ScholarPubMed
Karim, S., Miller, N. J., Valenzuela, J., Sauer, J. R. & Mather, T. N. (2005). RNAi-mediated gene silencing to assess the role of synaptobrevin and cystatin in tick blood feeding. Biochemical and Biophysical Research Communications 334, 1336–1342.CrossRefGoogle ScholarPubMed
Karim, S., Ramakrishnan, V. J., Tucker, J. S., Essenberg, R. C. & Sauer, J. R. (2004 a). Amblyomma americanum salivary glands: double stranded RNA-mediated gene silencing of synaptobrevin homologue and inhibition of PGE2 stimulated protein secretion. Insect Biochemistry and Molecular Biology 34, 407–413.CrossRefGoogle ScholarPubMed
Karim, S., Ramakrishnan, V. J., Tucker, J. S., Essenberg, R. C. & Sauer, J. R. (2004 b). Amblyomma americanum salivary gland homolog of nSec1 is essential for saliva protein secretion. Biochemical and Biophysical Research Communications 324, 1256–1263.CrossRefGoogle ScholarPubMed
Kaufman, W. R. (1976). The influence of various factors on fluid secretion by in vitro salivary glands of ixodid ticks. Journal of Experimental Biology 64, 727–742.Google ScholarPubMed
Kaufman, W. R. (1977). The influence of adrenergic agonists and their antagonists on isolated salivary glands of ixodid ticks. European Journal of Pharmacology 45, 61–68.CrossRefGoogle Scholar
Kaufman, W. R. (1991). Correlation between haemolymph ecdysteroid titre, salivary gland degeneration and ovarian development in the ixodid tick, Amblyomma hebraeum Koch. Journal of Insect Physiology 37, 95–99.CrossRefGoogle Scholar
Kaufman, W. R. & Harris, R. A. (1983). Neural pathways mediating salivary fluid secretion in the ixodid tick, Amblyomma hebraeum. Canadian Journal of Zoology 61, 1976–1980.CrossRefGoogle Scholar
Kaufman, W. R. & Phillips, J. E. (1973). Ion and water balance in the ixodid tick Dermacentor andersoni. I. Routes of ion and water excretion. Journal of Experimental Biology 58, 523–536.Google Scholar
Kaufman, W. R. & Wong, D. L. P. (1983). Evidence for multiple receptors mediating fluid secretion in salivary glands of ticks. European Journal of Pharmacology 87, 43–52.CrossRefGoogle ScholarPubMed
Kirkland, W. L. (1971). Ultrastructural changes in the nymphal salivary glands of the rabbit tick, Haemaphysalis leporispalustris during feeding. Journal of Insect Physiology 17, 1933–1946.CrossRefGoogle ScholarPubMed
Krolak, J. M., Ownby, C. L. & Sauer, J. R. (1982). Alveolar structure of salivary glands of the lone star tick, Amblyomma americanum (L.): unfed females. Journal of Parasitology 68, 61–82.CrossRefGoogle ScholarPubMed
Kurtti, T. J., Munderloh, U. G., Hayes, S. F., Krueger, D. E. & Ahlstrand, G. G. (1994). Ultrastructural analysis of the invasion of tick cells by Lyme disease spirochetes (Borrelia burgdorferi) in vitro. Canadian Journal of Zoology 72, 977–994.CrossRefGoogle Scholar
Lamoreaux, W. J. L., Junaid, L. & Trevidi, S. (2003). Morphological evidence that salivary gland degeneration in the American dog tick, Dermacentor variabilis (Say), involves programmed cell death. Tissue and Cell 35, 95–99.CrossRefGoogle Scholar
Lamoreaux, W. J., Needham, G. R. & Coons, L. B. (1994). Fluid secretion by isolated tick salivary glands depends on an intact cytoskeleton. International Journal for Parasitology 24, 563–567.CrossRefGoogle Scholar
Lindsay, P. J. & Kaufman, W. R. (1986). Potentiation of salivary fluid secretion in ixodid ticks: a new receptor system for γ-aminobutyric acid. Canadian Journal of Physiology and Pharmacology 64, 1119–1126.CrossRefGoogle ScholarPubMed
Lomas, L. O. & Kaufman, W. R. (1992). An indirect mechanism by which a protein from the male gonad hastens salivary gland degeneration in the female tick, Amblyomma hebraeum. Archives of Insect Biochemistry and Physiology 21, 169–178.CrossRefGoogle Scholar
Lomas, L. O., Turner, P. C. & Rees, H. H. (1997). A novel neuropeptide–endocrine interaction controlling ecdysteroid production in ixodid ticks. Proceedings of the Royal Society of London, B 264, 589–596.CrossRefGoogle ScholarPubMed
Madden, R. D., Sauer, J. R., Dillwith, J. W. & Bowman, A. S. (1996). Dietary modification of host blood lipids affects reproduction in the lone star tick, Amblyomma americanum (L.). Journal of Parasitology 82, 203–209.CrossRefGoogle Scholar
Mane, S. D., Darville, R. G., Sauer, J. R. & Essenberg, R. C. (1985). Cyclic AMP-dependent protein kinase from the salivary glands of the tick, Amblyomma americanum: partial purification and properties. Insect Biochemistry 15, 777–787.CrossRefGoogle Scholar
Mane, S. D., Sauer, J. R. & Essenberg, R. C. (1988). Molecular forms and free cAMP receptors of the cAMP-dependent protein kinase catalytic subunit isoforms from the lone star tick, Amblyomma americanum (L.). Insect Biochemistry 29, 43–51.Google Scholar
Mans, B. J., Venter, J. D., Coons, L. B., Louw, A. I. & Neitz, W. H. (2004). A reassessment of argasid tick salivary gland ultrastructure from an immuno-cytochemical perspective. Experimental and Applied Acarology 33, 119–129.CrossRefGoogle ScholarPubMed
Mao, H. & Kaufman, W. R. (1998). DNA binding properties of the ecdysteroid receptor in the salivary gland of the female ixodid tick, Amblyomma hebraeum. Insect Biochemistry and Molecular Biology 28, 947–957.CrossRefGoogle ScholarPubMed
Mao, H. & Kaufman, W. R. (1999). Profile of the ecdysteroid hormone and its receptor in the salivary gland of the adult female tick, Amblyomma hebraeum. Insect Biochemistry and Molecular Biology 29, 33–52.CrossRefGoogle ScholarPubMed
Mao, H., McBlain, W. A. & Kaufman, W. R. (1995). Some properties of the ecdysteroid receptor in the salivary gland of the ixodid tick, Amblyomma hebraeum. General and Comparative Endocrinology 99, 340–348.CrossRefGoogle ScholarPubMed
Maritz-Olivier, C., Louw, A. I. & Neitz, A. W. H. (2005). Similar mechanisms regulate protein exocytosis from the salivary glands of ixodid and argasid ticks. Journal of Insect Physiology 51, 1390–1296.CrossRefGoogle ScholarPubMed
Matsuzaki, T., Suzuki, T., Koyama, H. & Takata, K. (1999). Aquaporin-5 (AQP-5), a water channel protein, in the rat salivary and lacrimal glands: immunolocalization and effect of secretory stimulation. Cell and Tissue Research 295, 513–521.CrossRefGoogle Scholar
May, A. P., Whiteheart, S. W. & Weis, W. I. (2001). Unraveling the mechanism of the vesicle transport ATPase NSF, the n-ethylmaleimide sensitive factor. Journal of Biological Chemistry 276, 21991–21994.CrossRefGoogle ScholarPubMed
McSwain, J. L., Essenberg, R. C. & Sauer, J. R. (1985). Cyclic AMP mediated phosphorylation of endogenous proteins in salivary glands of the lone star tick, Amblyomma americanum (L.). Insect Biochemistry 15, 789–802.CrossRefGoogle Scholar
McSwain, J. L., Essenberg, R. C. & Sauer, J. R. (1992). Oral secretion elicited by effectors of signal transduction pathways in the salivary glands of Amblyomma americanum (Acari: Ixodidae). Journal of Medical Entomology 29, 41–48.CrossRefGoogle Scholar
McSwain, J. L.., Desilva, G. A., et al. (1997). Cloning and sequence of a gene for a homologue of the C subunit of the V-ATPase from the salivary gland of the tick Amblyomma americanum (L.). Insect Molecular Biology 8, 67–76.CrossRefGoogle Scholar
McSwain, J. L., Schmidt, S. P., Claypool, D. M., Essenberg, R. C. & Sauer, J. R. (1987). Subcellular location of phosphoproteins in salivary glands of the lone star tick, Amblyomma americanum (L.). Archives of Insect Biochemistry and Physiology 5, 29–43.CrossRefGoogle Scholar
Megaw, M. W. J. (1977). The innervation of the salivary gland of the tick, Boophilus microplus. Cell and Tissue Research 184, 551–558.CrossRefGoogle ScholarPubMed
Megaw, M. W. J. & Beadle, M. W. J. (1979). Structure and function of the salivary glands of the tick, Boophilus microplus Canestrini (Acarina: Ixodidae). International Journal of Insect Morphology and Embryology 8, 67–83.CrossRefGoogle Scholar
Narasimhan, S., Montgomery, R. R., Deponte, K., et al. (2004). Disruption of Ixodes scapularis anticoagulation by using RNA interference. Proceedings of the National Academy of Sciences of the USA 101, 1141–1146.CrossRefGoogle ScholarPubMed
Needham, G. R. & Sauer, J. R. (1975). Control of fluid secretion by isolated salivary glands of the lone star tick. Journal of Insect Physiology 21, 1893–1898.CrossRefGoogle ScholarPubMed
Needham, G. R. & Sauer, J. R. (1979). Involvement of calcium and cyclic AMP in controlling ixodid tick salivary fluid secretion. Journal of Parasitology 65, 531–542.CrossRefGoogle ScholarPubMed
Needham, G. R. & Teel, P. D. (1986). Water balance by ticks between bloodmeals. In Morphology, Physiology and Behavioral Biology of Ticks, eds. Sauer, J. R. & Hair, J. A., pp. 100–151. Chichester, UK: Ellis Horwood.Google Scholar
Needham, G. R. & Teel, P. D. (1991). Off-host physiological ecology of ixodid ticks. Annual Review of Entomology 36, 659–681.CrossRefGoogle ScholarPubMed
Negishi, M., Sugimoto, Y. & Ichikawa, A. (1993). Prostanoid receptors and their biological action. Progress in Lipid Research 32, 417–434.CrossRefGoogle Scholar
Nunes, E. T., Mathias, M. L. C. & Bechara, G. H. (2006). Structural and cytochemical changes in the salivary glands of the Rhipicephalus (Boophilus) microplus (Cannestrini, 1887) (Acari: Ixodidae) tick female during feeding. Veterinary Parasitology 140, 114–123.CrossRefGoogle Scholar
Oaks, J. F., McSwain, J. L., Bantle, J. A., Essenberg, R. C. & Sauer, J. R. (1991). Putative new expression of genes in ixodid tick salivary gland development during feeding. Journal of Parasitology 77, 378–383.CrossRefGoogle ScholarPubMed
Pal, U., Yang, X., Chen, M., et al. (2004). OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. Journal of Clinical Investigation 113, 220–230.CrossRefGoogle ScholarPubMed
Palmer, M. J., McSwain, J. L., Spatz, M. D., et al. (1999). Molecular cloning of cAMP-dependent protein kinase catalytic subunit isoforms from the lone star tick, Amblyomma americanum (L.). Insect Biochemistry and Molecular Biology 29, 43–51.CrossRefGoogle Scholar
Pedibhotla, V. K., Sauer, J. R. & Stanley-Samuelson, D. W. (1997). Prostaglandin biosynthesis by salivary glands isolated from the lone star tick Amblyomma americanum. Insect Biochemistry and Molecular Biology 27, 255–261.CrossRefGoogle ScholarPubMed
Preston, G. M., Carroll, T. P., Guggino, W. B. & Agre, P. (1992). Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256, 385–387.CrossRefGoogle ScholarPubMed
Qian, Y., Essenberg, R. C., Dillwith, J. W., Bowman, A. S. & Sauer, J. R. (1997). A specific prostaglandin E2 receptor and its role in modulating salivary secretion in the female tick, Amblyomma americanum (L.). Insect Biochemistry and Molecular Biology 27, 387–395.CrossRefGoogle Scholar
Qian, Y., Yuan, J., Essenberg, R. C., et al. (1998). Prostaglandin E2 in the salivary glands of the female tick Amblyomma americanum (L.): calcium mobilization and exocytosis. Insect Biochemistry and Molecular Biology 28, 221–228.CrossRefGoogle ScholarPubMed
Ramamoorthi, N., Narasimhan, S., Pal, U., et al. (2005). The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436, 573–577.CrossRefGoogle ScholarPubMed
Ribeiro, J. M. C., Evans, P. M., McSwain, J. L. & Sauer, J. R. (1992). Amblyomma americanum: characterization of salivary prostaglandins E2 and F2α by RP-HPLC/ bioassay and gas chromatography–mass spectrometry. Experimental Parasitology 74, 112–116.CrossRefGoogle Scholar
Roshdy, M. A. & Coons, L. B. (1975). The subgenus Persicargas (Ixodoidae: Argasidae: Argas). XXIII. Fine structure of the salivary glands of unfed A. (P.) arboreus Kaiser, Hoogstraal and Kohls. Journal of Parasitology 61, 743–752.CrossRefGoogle Scholar
Rudolph, D. & Knulle, W. (1974). Site and mechanism of water vapour uptake from the atmosphere of ixodid ticks. Nature 249, 84–85.CrossRefGoogle ScholarPubMed
Rudolph, D. & Knulle, W. (1979). Mechanisms contributing to water balance in non-feeding ticks and their ecological implications. In Recent Advances in Acarology, vol. 1, ed. Rodriguez, J. G., pp. 375–383. New York: Academic Press.Google Scholar
Sauer, J. R. & Essenberg, R. C. (1984). Role of cyclic nucleotides and calcium in controlling tick salivary gland function. American Zoologist 24, 217–227.CrossRefGoogle Scholar
Sauer, J. R., Bowman, A. S., McSwain, J. L. & Essenberg, R. C. (1996). Salivary gland physiology of blood-feeding arthropods. In The Immunology of Host–Ectoparasitic Arthropod Relationships, ed. Wikel, S. K., pp. 62–84. Wallingford, UK: CAB International.Google Scholar
Sauer, J. R., Essenberg, R. C. & Bowman, A. S. (2000). Salivary glands in ixodid ticks: control and mechanism of secretion. Journal of Insect Physiology 46, 1069–1078.CrossRefGoogle ScholarPubMed
Sauer, J. R., Mane, S. D., Schmidt, S. P. & Essenberg, R. C. (1986). Molecular basis for salivary secretion in ixodid ticks. In Morphology, Physiology and Behavioral Biology of Ticks, eds. Sauer, J. R. & Hair, J. A., pp. 55–74. Chichester, UK: Ellis Horwood.Google Scholar
Sauer, J. R., McSwain, J. L., Bowman, A. S. & Essenberg, R. C. (1995). Tick salivary gland physiology. Annual Review of Entomology 40, 245–267.CrossRefGoogle ScholarPubMed
Schmidt, S. P., Essenberg, R. C. & Sauer, J. R. (1981). Evidence for a D1 dopamine receptor in the salivary glands of Amblyomma americanum (L.). Journal of Cyclic Nucleotide Research 7, 375–384.Google Scholar
Schmidt, S. P., Essenberg, R. C. & Sauer, J. R. (1982). Dopamine sensitive adenylate cyclase in the salivary glands of the lone star tick. Comparative Biochemistry and Physiology 72, 9–14.Google Scholar
Shipley, M. M., Dillwith, J. W., Bowman, A. S., Essenberg, R. C. & Sauer, J. R. (1993 b). Changes in lipids of salivary glands of the lone star tick, Amblyomma americanum, during feeding. Journal of Parasitology 79, 834–842.CrossRefGoogle ScholarPubMed
Shipley, M. M., Dillwith, J. W., Essenberg, R. C., Howard, R. W. & Sauer, J. R. (1993 a). Analysis of lipids in the salivary glands of Amblyomma americanum (L.): detection of a high level of arachidonic acid. Archives of Insect Biochemistry and Physiology 23, 37–52.CrossRefGoogle ScholarPubMed
Sigal, M. D., Needham, G. R. & Machin, J. (1991). Hyperosmotic oral fluid secretion during active water vapour absorption and during desiccation-induced storage excretion by the unfed tick Amblyomma americanum. Journal of Experimental Biology 157, 585–591.Google ScholarPubMed
Sukumaran, B., Narasimhan, S., Anderson, J. F., et al. (2006). An Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands. Journal of Experimental Medicine 203, 1507–1517.CrossRefGoogle ScholarPubMed
Tabish, M., Clegg, R. A., Turner, P. C., et al. (2006). Molecular characterization of cAMP-dependent protein kinase (PK-A) catalytic subunit isoforms in the male tick, Amblyomma hebraeum. Molecular and Biochemical Parasitology 150, 330–339.CrossRefGoogle Scholar
Tanaka, M., Liao, M., Zhou, J. L., et al. (2007). Molecular cloning of two caspase-like genes from the hard tick Haemaphysalis longicornis. Journal of Veterinary Medical Science 69, 85–90.CrossRefGoogle ScholarPubMed
Tatchell, R. J. (1967). Salivary secretions in the cattle tick as a means of water elimination. Nature 213, 940–941.CrossRefGoogle Scholar
Tatchell, R. J. (1969). The ionic regulatory role of salivary secretions of the cattle tick, Boophilus microplus. Journal of Insect Physiology 15, 1421–1430.CrossRefGoogle Scholar
Till, W. M. (1961). A contribution to the anatomy and histology of the brown ear tick Rhipicephalus appendiculatus Neumann. Memoirs of the Entomological Society of South Africa 6, 1–124.Google Scholar
Verkman, A. S. (2002). Aquaporin water channels and endothelial cell function. Journal of Anatomy 200, 617–627.CrossRefGoogle ScholarPubMed
Walker, A. R., Fletcher, J. D. & Gill, H. S. (1985). Structural and histochemical changes in the salivary glands of Rhipicephalus appendiculatus during feeding. International Journal for Parasitology 15, 81–100.CrossRefGoogle ScholarPubMed
Weiss, B. L. & Kaufman, W. R. (2004). Two feeding-induced proteins from the male gonad trigger engorgement of the female tick Amblyomma hebraeum. Proceedings of the National Academy of Sciences of the USA 101, 5874–5879.CrossRefGoogle ScholarPubMed
Wong, D. L. P. & Kaufman, W. (1981). Potentiation by spiperone and other butyrophenones of fluid secretion by isolated salivary glands of ixodid ticks. European Journal of Pharmacology 73, 163–173.CrossRefGoogle ScholarPubMed
Yuan, J., Bowman, A. S., Aljamali, M., et al. (2000). PGE2 stimulated secretion of protein in the salivary glands of the lone star tick via a phosphoinositide signaling pathway. Insect Biochemistry and MolecularBiology 30, 1099–1106.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×