Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T13:10:10.803Z Has data issue: false hasContentIssue false

7 - Chemistry of Titan's atmosphere

Published online by Cambridge University Press:  05 January 2014

V. Vuitton
Affiliation:
CNRS & Université Joseph Fourier
O. Dutuit
Affiliation:
CNRS & Université Joseph Fourier
M. A. Smith
Affiliation:
University of Houston
N. Balucani
Affiliation:
Universitá degli Studi di Perugia
Ingo Müller-Wodarg
Affiliation:
Imperial College London
Caitlin A. Griffith
Affiliation:
University of Arizona
Emmanuel Lellouch
Affiliation:
Observatoire de Paris, Meudon
Thomas E. Cravens
Affiliation:
University of Kansas
Get access

Summary

7.1 Introduction

Understanding Titan's atmospheric chemistry is a daunting task because of the multiplicity of chemical as well as physical processes involved. Chemical processes begin with the dissociation and/or ionization of the most abundant species, N2 and CH4, by a variety of energy sources. The energetic species produced further react to generate a plethora of gaseous molecules that will eventually become heavy enough to become organic aerosols. Thus, molecular growth is driven by gas phase reactions involving radicals and positive and negative ions, all possibly in some excited electronic state, as well as by heterogenous chemistry on the surface of the aerosols. The efficiency and outcome of these reactions depend strongly on the physical characteristics of the atmosphere, namely pressure and temperature. Moreover, the distribution of the species is affected by molecular diffusion and vertical and horizontal winds, as well as escape from the top of the atmosphere and condensation in the lower stratosphere. An illustration of Titan's atmospheric chemistry is presented in Figure 7.1.

Our interest in Titan's chemistry started in the 1970s, when it became apparent that the atmospheric CH4-to-H2 ratio was much larger than that in the atmospheres of the giant planets, rendering Titan's atmosphere better suited for the synthesis of organic compounds. However, ground-based observations indicated that CH4 was the principal atmospheric constituent and, because of this, the photochemical models of Allen et al. (1980) and Strobel (1974) were restricted to hydrocarbon chemistry.

Type
Chapter
Information
Titan
Interior, Surface, Atmosphere, and Space Environment
, pp. 224 - 284
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, N. G., Poterya, V, and Babcock, L. M. 2006. Electron Molecular Ion Recombination: Product Excitation and Fragmentation. Mass Spec. Rev., 25, 798–828. 10.1002/mas.20084.Google Scholar
Adams, N. G., Mathews, L. D., and Osborne, D. Jr. 2010. Laboratory Chemistry Relevant to Understanding and Modeling the Ionosphere of Titan. Faraday Discuss., 147, 323–335. 10.1039/c003233f.Google Scholar
Agren, K., Wahlund, J.-E., Modolo, R., Lummerzheim, D., et al. 2007. On Magnetospheric Electron Impact Ionisation and Dynamics in Titan's Ram-Side and Polar Ionosphere – a Cassini Case Study. Ann. Geophys., 25, 2359–2369. 10.5194/angeo-25-2359-2007.Google Scholar
Agren, K., Wahlund, J.-E., Garnier, P., Modolo, R., et al. 2009. On the Ionospheric Structure of Titan. Planet. Space Sci., 57, 1821–1827. 10.1016/j.pss.2009.04.012.Google Scholar
Agúndez, M., Cernicharo, J., Guelin, M., Kahane, C., et al. 2010. Astronomical Identification of CN-, the Smallest Observed Molecular Anion. Astron. Astrophys., 517, L2. 10.1051/0004-6361/201015186.Google Scholar
Ajello, J. M., Stevens, M. H., Stewart, I., Larsen, K., et al. 2007. Titan Airglow Spectra from Cassini Ultraviolet Imaging Spectrograph (UVIS): EUV Analysis. Geophys. Res. Lett., 34, L24202. 10.1029/2007GL031555.Google Scholar
Ajello, J. M., Gustin, J., Stewart, I., Larsen, K., et al. 2008. Titan Airglow Spectra from Cassini Ultraviolet Imaging Spectrograph: FUV Analysis. Geophys. Res. Lett., 35, L06102. 10.1029/2007GL032315.Google Scholar
Allen, M., Pinto, J. P., and Yung, Y. L. 1980. Titan: Aerosol Photochemistry and Variations Related to the Sunspot Cycle. Astrophys. J., 242, L125–L128. 10.1086/183416.Google Scholar
Anicich, V. G. 1993. Evaluated Bimolecular Ion-Molecule Gas Phase Kinetics of Positive Ions for Use in Modeling Planetary Atmospheres, Cometary Comae, and Interstellar Clouds. J. Phys. Chem. Ref. Data, 22, 1469–1569. 10.1063/1.555940.Google Scholar
Anicich, V G., and McEwan, M. J. 1997. Ion-Molecule Chemistry in Titan's Ionosphere. Planet. Space Sci., 45, 897–921. 10.1016/S0032-0633(97)00053-6.Google Scholar
Anicich, V G., Milligan, D. B., Fairley, D. A., and McEwan, M. J. 2000. Termolecular Ion-Molecule Reactions in Titan's Atmosphere. I: Principal Ions with Principal Neutrals. Icarus, 146, 118–124. 10.1006/icar.2000.6353.Google Scholar
Anicich, V G., Wilson, P., and McEwan, M. J. 2004. A SIFT Ion-Molecule Study of Some Reactions in Titan's Atmosphere. Reactions of N+,N+ and HCN+ with CH4, C2H2, and C2H4. J. Am. Soc. Mass Spectrom., 15, 1148–1155. 10.1016/j.jasms.2004.04.005.Google Scholar
Anicich, V G., Wilson, P. F., and McEwan, M. J. 2006. An ICR Study of Ion-Molecules Reactions Relevant to Titan's Atmosphere: An Investigation of Binary Hydrocarbon Mixtures up to 1 Micron. J. Am. Soc. Mass Spectrom., 17, 544–561. 10.1016/j.jasms.2005.11.022.Google Scholar
Aoto, T., Ito, K., Hikosaka, Y., Shibasaki, A., et al. 2006. Inner-Valence States of N+ and the Dissociation Dynamics Studied by Threshold Photoelectron Spectroscopy and Configuration Interaction Calculation. J. Chem. Phys., 124, 6. 10.1063/1.2206586.Google Scholar
Ascenzi, D., Cont, N., Guella, G., Franceschi, P., et al. 2007. New Insights into the Reaction Mechanisms of Phenylium Ions with Benzene. J. Phys. Chem. A, 111, 12513–12523. 10.1021/jp075860h.Google Scholar
Ascenzi, D., Aysina, J., Tosi, P., Maranzana, A., et al. 2010. Growth of Polyaromatic Molecules via Ion-Molecule Reactions: An Experimental and Theoretical Mechanistic Study. J. Chem. Phys., 133, 184308. 184308 10.1063/1.3505553.Google Scholar
Ascenzi, D., Aysina, J., Zins, E.-L., Schröder, D., et al. 2011. Double Ionization of Cycloheptatriene and the Reactions of the Resulting C7H2+n Dications (n = 6,8) with Xenon. Phys. Chem. Chem. Phys., 13, 18330–18338. 10.1039/c1cp21634a.Google Scholar
Atreya, S. K. 1986. Atmospheres and Ionospheres of the Outer Planets and Their Satellites. Physics and Chemistry in Space, vol. 15. New York: Springer-Verlag.
Baines, K. H., Drossart, P., Lopez-Valverde, M. A., Atreya, S. K., et al. 2006. On the Discovery of CO Nighttime Emissions on Titan by Cassini/VIMS: Derived Stratospheric Abundances and Geological Implications. Planet. Space Sci., 54, 1552–1562. 10.1016/j.pss.2006.06.020.Google Scholar
Bakes, E. L. O., McKay, C. P., and Bauschlicher, C. W. Jr., 2002. Photoelectric Charging of Submicron Aerosols and Macromolecules in the Titan Haze. Icarus, 157, 464–475. 10.1006/icar.2002.6843.Google Scholar
Bakes, E. L. O., Lebonnois, S., Bauschlicher, C. W. Jr., and McKay, C. P. 2003. The role of Submicrometer Aerosols and Macromolecules in H2 Formation in the Titan Haze. Icarus, 161, 468–473. 10.1016/S0019-1035(02)00040-4.Google Scholar
Balko, B. A., Zhang, J., and Lee, Y. T. 1991. 193 nm Photodissociation of Acetylene. J. Chem. Phys., 94, 7958–7966. 10.1063/1.460130.Google Scholar
Balucani, N., Alagia, M., Cartechini, L., Casavecchia, P., et al. 2000a. Cyanomethylene Formation from the Reaction of Excited Nitrogen Atoms with Acetylene: A Crossed Beam and Ab Initio Study. J. Am. Chem. Soc., 122, 4443–4450. 10.1021/ja993448c.Google Scholar
Balucani, N., Asvany, O., Huang, L. C. L., Lee, Y. T., et al. 2000b. Formation of Nitriles in the Interstellar Medium via Reactions of Cyano Radicals, CN(X2Σ+), with Unsaturated Hydrocarbons. Astrophys. J., 545, 892–906. 10.1086/317848.Google Scholar
Balucani, N., Cartechini, L., Alagia, M., Casavecchia, P., et al. 2000c. Observation of Nitrogen-Bearing Organic Molecules from Reactions of Nitrogen Atoms with Hydrocarbons: A Crossed Beam study of N(2D) + Ethylene. J. Phys. Chem. A, 104, 5655–5659. 10.1021/jp001057a.Google Scholar
Balucani, N., Bergeat, A., Cartechini, L., Volpi, G. G., et al. 2009. Combined Crossed Molecular Beam and Theoretical Studies of the N(2D) + CH4 Reaction and Implications for Atmospheric Models of Titan. J. Phys. Chem. A, 113, 11138–11152. 10.1021/jp904302g.Google Scholar
Balucani, N., Leonori, F., Petrucci, R., Stazi, M., etal. 2010. Formation of Nitriles and Imines in the Atmosphere of Titan: Combined Crossed-Beam and Theoretical Studies onthe Reaction Dynamics of Excited Nitrogen Atoms N(2D) with Ethane. Faraday Discuss., 147, 189–216. 10.1039/c004748a.Google Scholar
Banaszkiewicz, M., Lara, L. M., Rodrigo, R., López-Moreno, J. J., et al. 2000a. A Coupled Model of Titan's Atmosphere and Ionosphere. Icarus, 147, 386–404. 10.1006/icar.2000.6448.Google Scholar
Banaszkiewicz, M., Lara, L. M., Rodrigo, R., López-Moreno, J. J., et al. 2000b. The Upper Atmosphere and Ionospere of Titan: A Coupled Model. Adv. Space Res., 26, 1547–1550. 10.1016/S0273-1177(00)00095-8.Google Scholar
Banks, P. M., and Kockarts, G. 1973. Aeronomy, Part B. New York: Academic Press Inc.
Barckholtz, C., Snow, T. P., and Bierbaum, V M. 2001. Reactions of C- and Cn H- with Atomic and Molecular Hydrogen. Astrophys. J., 547, L171–L174. 10.1086/318909.Google Scholar
Basile, B., Lazcano, A., and Oro, J. 1984. Prebiotic Syntheses of Purines and Pyrimidines. Adv. Space Res., 4, 125–131. 10.1016/0273-1177(84)90554-4.Google Scholar
Bates, D. R. 1950. Dissociative Recombination. Phys. Rev., 78, 492. 10.1103/PhysRev.78.492.Google Scholar
Bates, D. R. 1986. Products of Dissociative Recombination of Polyatomic Ions. Astrophys. J., 306, L45–L47. 10.1086/184702.Google Scholar
Bates, D. R. 1989. Dissociative Recombinationof Polyatomic Ions - Curve Crossing. Astrophys. J., 344, 531–534. 10.1086/167823.Google Scholar
Baulch, D. L., Bowman, C. T., Cobos, C. L., Cox, R. A., et al. 2005. Evaluated Kinetic Data for Combustion Modeling: Supplement II. J. Phys. Chem. Ref. Data, 34, 757–1397. 10.1063/1.1748524.Google Scholar
Bazin, A., Vuitton, V, Yelle, R. V, and Lavvas, P. 2011. Altitude Distribution of the Negative Ions in Titan's Atmosphere. In: EPSC-DPS Joint Meeting 2011, vol. 6. Nantes, France: EPSC Abstracts.Google Scholar
Bell, J. M., Bougher, S. W., Waite, J. H. Jr., Ridley, A. J., et al. 2010a. Simulating the One-Dimensional Structure of Titan's Upper Atmosphere: 1. Formation of the Titan Global Ionosphere-Thermosphere Model and Benchmark Simulations. J. Geophys. Res., 115, E12002. 10.1029/2010JE003636.Google Scholar
Bell, J. M., Bougher, S. W., Waite, J. H. Jr., Ridley, A. J., et al. 2010b. Simulating the One-Dimensional Structure of Titan's Upper Atmosphere: 2. Alternative Scenarios for Methane Escape. J. Geophys. Res., 115, E12018. 10.1029/2010JE003638.Google Scholar
Bellucci, A., Sicardy, B., Drossart, P., Rannou, P., et al. 2009. Titan Solar Occultation Observed by Cassini/ VIMS: Gas Absorption and Constraints on Aerosol Composition. Icarus, 201, 198–216. 10.1016/j.icarus.2008.12.024.Google Scholar
Benilan, Y., Smith, N., Jolly, A., and Raulin, F. 2000. The Long Wavelength Range Temperature Variations of the Mid-UV Acetylene Absorption Coefficient. Planet. Space Sci., 48, 463–471. 10.1016/S0032-0633(00)00019-2.Google Scholar
Bernard, J.-M., Coll, P., Coustenis, A., and Raulin, F. 2003. Experimental Simulation of Titan's Atmosphere: Detection of Ammonia and Ethylene Oxide. Planet. Space Sci., 51, 1003–1011. 10.1016/j.pss.2003.05.009.Google Scholar
Berteloite, C., Le Picard, S. D., Balucani, N., Canosa, A., et al. 2010a. Low Temperature Rate Coefficients for Reactions of the Butadiynyl Radical, C4H, with Various Hydrocarbons. Part I: Reactions with Alkanes CH4,C2H6, C3H8, C4H10. Phys. Chem. Chem. Phys., 12, 3666–3676. 10.1039/b907154g.Google Scholar
Berteloite, C., Le Picard, S. D., Balucani, N., Canosa, A., et al. 2010b. Low Temperature Rate Coefficients for Reactions of the Butadiynyl Radical, C4H, with Various Hydrocarbons. Part II: Reactions with Alkenes (Ethylene, Propene, 1-Butene), Dienes (Allene, 1,3-Butadiene) and Alkynes (Acetylene, Propyne and 1-Butyne). Phys. Chem. Chem. Phys., 12, 3677–3689. 10.1039/b923867k.Google Scholar
Bézard, B. 2009. Composition and Chemistry of Titan's Stratosphere. Phil. Trans. R. Soc. A, 367, 683–695. 10.1098/rsta.2008.0186.Google Scholar
Biemann, K. 2006. Complex Organic Matter in Titan's Aerosols?Nature, 444, E6. 10.038/nature05417.Google Scholar
Bohme, D. K., Wlodek, S., and Raksit, A. B. 1987a. Growing Interstellar Cyanopolyacetylenes with Ion/Molecule Reactions. Can. J. Chem., 65, 2057–2061. 10.1139/v87-341.Google Scholar
Bohme, D. K., Wlodek, S., Raksit, A. B., Schiff, H. I., et al. 1987b. Selected-Ion Flow Tube Studies of Reactions of C2N+ Ions Derived from Cyanogen by Electron Ionization. Int. J. Mass Spectrom. Ion Process., 81, 123–145. 10.1016/0168-1176(87)80009-5.Google Scholar
Bohme, D. K., Wlodek, S., Zimmerman, J. A., and Eyler, J. R. 1991. Formation of C10H8+ from the Benzene Radical Cation. A Case for the Growth of Polycyclic Aromatic Hydrocarbon Ions by Ion Molecule Reactions in the Gas Phase. Int. J. Mass Spectrom. Ion Process., 109, 31–47. 10.1016/0168-1176(91)85095-4.Google Scholar
Borucki, W. J., Levin, Z., Whitten, R. C., Keesee, R. G., et al. 1987. Predictions of the Electrical Conductivity and Charging of the Aerosols in Titan's Atmosphere. Icarus, 72, 604–622. 10.1016/0019-1035(87)90056-X.Google Scholar
Borucki, W. J., Whitten, R. C., Bakes, E. L. O., Barth, E., et al. 2006. Predictions of the Electrical Conductivity and Charging of the Aerosols in Titan's Atmosphere. Icarus, 181, 527–544. 10.1016/j.icarus.2005.10.030.Google Scholar
Boyé, S., Campos, A., Douin, S., Fellows, C., et al. 2002. Visible Emission from the Vibrationally Hot C2H Radical Following Vacuum-Ultraviolet Photolysis of Acetylene: Experiment and Theory. J. Chem. Phys., 116, 8843–8855. 10.1063/1.1471239.Google Scholar
Brownsword, R. A., Hillenkamp, M., Laurent, T., Vatsa, R. K., et al. 1997. Quantum Yield for H Atom Formation in the Methane Dissociation after Photoexcitation at the Lyman-Alpha (121.6 nm) Wavelength. Chem. Phys. Lett., 266, 259–266. 10.1016/S0009-2614(96)01526-6.Google Scholar
Brünken, S., Gupta, H., Gottlieb, C. A., McCarthy, M. C., et al. 2007. Detection of the Carbon Chain Negative Ion C8H- in TMC-1. Astrophys. J., 664, L43–L46. 10.1086/520703.Google Scholar
Cable, M. L., Hörst, S. M., Hodyss, R., Beauchamp, P. M., et al. 2012. Titan Tholins: Simulating Titan Organic Chemistry in the Cassini-Huygens Era. Chem. Rev., 112, 1882–1909. 10.1021/cr200221x.Google Scholar
Canosa, A. 2007. Gas Phase Reaction Kinetics at Very Low Temperatures: Recent Advances on Carbon Chemistry Using the CRESU Technique. Russian Chem. Rev., 76, 1093–1106. 10.1070/RC2007v076n12ABEH003733.Google Scholar
Capone, L. A., Whitten, R. C., Dubach, J., Prasad, S. S., et al. 1976. The Lower Ionosphere of Titan. Icarus, 28, 367–378. 10.1016/0019-1035(76)90150-0.Google Scholar
Carles, S., Adjali, F., Monnerie, C., Guillemin, J. C., etal. 2011. Kinetic Studies at Room Temperature of the Cyanide Anion CN- with Cyanoacetylene (HC3N) Reaction. Icarus, 211, 901–905. 10.1016/j.icarus.2010.08.019.Google Scholar
Carrasco, N., and Pernot, P. 2007. Modeling of Branching Ratio Uncertainty in Chemical Networks by Dirichlet Distributions. J. Phys. Chem. A, 111, 3507–3512. 10.1021/jp067306y.Google Scholar
Carrasco, N., Hébrard, E., Banaszkiewicz, M., Dobrijevic, M., et al. 2007a. Influence of Neutral Transport on Ion Chemistry Uncertainties in Titan Ionosphere. Icarus, 192, 519–526. 10.1016/j.icarus.2007.08.016.Google Scholar
Carrasco, N., Dutuit, O., Thissen, R., Banaszkiewicz, M., et al. 2007b. Uncertainty Analysis of Bimolecular Reactions in Titan Ionosphere Chemistry Model. Planet. Space Sci., 55, 141–157. 10.1016/j.pss.2006.06.004.Google Scholar
Carrasco, N., Alcaraz, C., Dutuit, O., Plessis, S., et al. 2008a. Sensitivity of a Titan Ionospheric Model to the Ion-Molecule Reaction Parameters. Planet. Space Sci., 56, 1644–1657. 10.1016/j..pss.2008.04.007.Google Scholar
Carrasco, N., Plessis, S., Dobrijevic, M., and Pernot, P. 2008b. Toward a Reduction of the Bimolecular Reaction Model for Titan's Ionosphere. Int. J. Chem. Kin., 40, 699–709. 10.1002/kin.20374.Google Scholar
Cernicharo, J., Guelin, M., Agúndez, M., Kawaguchi, K., et al. 2007. Astronomical Detection of C4H-,the Second Interstellar Anion. Astron. Astrophys., 467, L37–L40. 10.1051/0004-6361:20077415.Google Scholar
Cernicharo, J., Guelin, M., Agúndez, M., McCarthy, M. C., et al. 2008. Detection of C5N- and Vibrationally Excited C6HinIRC + 10216. Astrophys. J., 688, L83–L86. 10.1086/595583.Google Scholar
Chaizy, P., Reme, H., Sauvaud, J. A., d'Uston, C., et al. 1991. Negative Ions in the Coma of Comet Halley. Nature, 349, 393–396. 10.1038/349393a0.Google Scholar
Chapman, S., and Cowling, T. G. 1990. The Mathematical Theory of Non-Uniform Gases. 3rd ed. Cambridge University Press.
Chastaing, D., James, P. L., Sims, I. R., and Smith, I. W. M., 1998. Neutral-Neutral Reactions at the Temperatures of Interstellar Clouds. Rate Coefficients for Reactions of C2H Radicals with O2, C2H2, C2H4 and C3H6 down to 15 K. Faraday Discuss., 109, 165–181. 10.1039/A800495A.Google Scholar
Clarke, D. W., and Ferris, J. P. 1997. Titan Haze: Structure and Properties of Cyanoacetylene and Cyanoacetylene-Acetylene Photopolymers. Icarus, 127, 158–172. 10.1006/icar.1996.5667.Google Scholar
Coates, A. J., Crary, F., Lewis, G., Young, D. T., et al. 2007. Discovery of Heavy Negative Ions in Titan's Ionosphere. Geophys. Res. Lett., 34, L22103. 10.1029/2007GL030978.Google Scholar
Coates, A. J., Wellbrock, A., Lewis, G. R., Jones, G. H., et al. 2009. Heavy Negative Ions in Titan's Ionosphere: Altitude and Latitude Dependence. Planet. Space Sci., 57, 1866–1871. 10.1016/j.pss.2009.05.009.Google Scholar
Coates, A. J., Wellbrock, A., Lewis, G. R., Jones, G. H., et al. 2010. Negative Ions at Titan and Enceladus: Recent Results. Faraday Discuss., 147, 293–305. 10.1039/c004700g.Google Scholar
Coll, P., Coscia, D., Gazeau, M.-C., de Vanssay, E., etal. 1995. Organic Chemistry in Titan's Atmosphere: New Data from Laboratory Simulations at Low Temperature. Adv. Space Res., 16, 93–103. 10.1016/0273-1177(95)00197-M.Google Scholar
Coll, P., Ramirez, S. I., Navarro-Gonzalez, R., and Raulin, F. 2001. Chemical and Optical Behaviour of Tholins, Laboratory Analogues of Titan Aerosols. Adv. Space Res., 27, 289–297. 10.1016/S0273-1177(01)00060-6.Google Scholar
Coll, P., Bernard, J.-M., Navarro-Gonzalez, R., and Raulin, F. 2003. Oxirane: An Exotic Oxygenated Organic Compound on Titan?Astrophys. J., 598, 700–703. 10.1086/378792.Google Scholar
Cordier, D., Mousis, O., Lunine, J. I., Lavvas, P., etal. 2009. An Estimate of the Chemical Composition of Titan's Lakes. Astrophys. J., 707, L128–L131. 10.1088/0004-637X/707/2/L128.Google Scholar
Courtin, R., Gautier, D., and McKay, C. P. 1995. Titan's Thermal Emission Spectrum: Reanalysis of the Voyager Infrared Measurements. Icarus, 114, 144–162. 10.1006/icar.1995.1050.Google Scholar
Coustenis, A., and Bézard, B. 1995. Titan's Atmosphere from Voyager Infrared Observations IV. Latitudinal Variations of Temperature and Composition. Icarus, 115, 126–140. 10.1006/icar.1995.1084.Google Scholar
Coustenis, A., Bézard, B., and Gautier, D. 1989. Titan's Atmosphere from Voyager Infrared Observations I. The Gas Composition of Titan's Equatorial Region. Icarus, 80, 54–76. 10.1016/0019-1035(89)90161-9.Google Scholar
Coustenis, A., Bézard, B., Gautier, D., Marten, A., et al. 1991. Titan's Atmosphere from Voyager Infrared Observations III. Vertical Distributions of Hydrocarbons and Nitriles near Titan's North Pole. Icarus, 89, 152–167. 10.1016/0019-1035(91)90095-B.Google Scholar
Coustenis, A., Salama, A., Lellouch, E., Encrenaz, Th., et al. 1998. Evidence for Water Vapor in Titan's Atmosphere from ISO/SWS Data. Astron. Astrophys., 336, L85–L89.Google Scholar
Coustenis, A., Salama, A., Schulz, B., Ott, S., et al. 2003. Titan's Atmosphere from ISO Mid-Infrared Spectroscopy. Icarus, 161, 383–403. 10.1016/S0019-1035(02)00028-3.Google Scholar
Coustenis, A., Achterberg, R. K., Conrath, B. J., Jennings, D. E., et al. 2007. The Composition of Titan's Stratosphere from Cassini/CIRS Mid-Infrared Spectra. Icarus, 189, 35–62. 10.1016/j.icarus.2006.12.022.Google Scholar
Coustenis, A., Jennings, D. E., Nixon, C. A., Achterberg, R. K., et al. 2010. Titan Trace Gaseous Composition from CIRS at the End of the Cassini-Huygens Prime Mission. Icarus, 207, 461–476. 10.1016/j.icarus.2009.11.027.Google Scholar
Crary, F. J., Magee, B. A., Mandt, K., Waite, J. H. Jr., et al. 2009. Heavy Ions, Temperatures and Winds in Titan's Ionosphere: Combined Cassini CAPS and INMS Observations. Planet. Space Sci., 57, 1847–1856. 10.1016/j.pss.2009.09.006.Google Scholar
Cravens, T. E., Vann, J., Clark, J., Yu, J., et al. The Ionosphere of Titan: An Updated Theoretical Model. Adv. Space Res., 33, 212–215. 10.1016/j.asr.2003.02.012.
Cravens, T. E., Robertson, I. P., Clark, J., Wahlund, J.-E., et al. 2005. Titan's Ionosphere: Model Comparisons with Cassini Ta Data. Geophys. Res. Lett., 32, L12108. 10.1029/2005GL023249.Google Scholar
Cravens, T. E., Robertson, I. P., Waite, J. H. Jr., Yelle, R. V., et al. 2006. Composition of Titan's Ionosphere. Geophys. Res. Lett., 33, L07105. 10.1029/2005GL025575.Google Scholar
Cravens, T. E., Robertson, I. P., Ledvina, S. A., Mitchell, D., et al. 2008. Energetic Ion Precipitation at Titan. Geophys. Res. Lett., 35, L03103. 10.1029/2007GL032451.Google Scholar
Cravens, T. E., Robertson, I. P., Waite, J. H. Jr., Yelle, R. V., et al. 2009. Model-Data Comparisons for Titan's Nightside Ionosphere. Icarus, 199, 174–188. 10.1016/j.icarus.2008.09.005.Google Scholar
Crespin, A., Lebonnois, S., Vinatier, S., Bézard, B., et al. 2008. Diagnostics of Titan's Stratospheric Dynamics Using the Cassini/CIRS Data and the 2-Dimensional IPSL Circulation Model. Icarus, 197, 556–571. 10.1016/j.icarus.2008.05.010.Google Scholar
Cui, J., Yelle, R. V, Vuitton, V, Waite, J. H. Jr., et al. 2009a. Analysis of Titan's Neutral Upper Atmosphere from Cassini Ion Neutral Mass Spectrometer Measurements. Icarus, 200, 581–615. 10.1016/j.icarus.2008.12.005.Google Scholar
Cui, J., Galand, M., Yelle, R. V, Vuitton, V, et al. 2009b. Diurnal Variations of Titan's Ionosphere. J. Geophys. Res., 114, A06310. 10.1029/2009JA014228.Google Scholar
Cui, J., Galand, M., Yelle, R. V, Wahlund, J.-E., et al. 2010. Ion Transport in Titan's Upper Atmosphere. J. Geophys. Res., 115, A06314. 10.1029/2009JA014563.Google Scholar
Danielson, R. E., and Caldwell, J. J. 1973. An Inversion in the Atmosphere of Titan. Icarus, 20, 437–443. 10.1016/0019-1035(73)90016-X.Google Scholar
De Kok, R., Irwin, P. G. J., Teanby, N. A., Lellouch, E., et al. 2007. Oxygen Compounds in Titan's Stratosphere as Observed by Cassini CIRS. Icarus, 186, 354–363. 10.1016/j.icarus.2006.09.016.Google Scholar
De La Haye, V., Waite, J. H. Jr., Cravens, T. E., Nagy, A. F., et al. 2007. Titan's Corona: The Contribution of Exothermic Chemistry. Icarus, 191, 236–250. 10.1016/j.icarus.2007.04.031.Google Scholar
De La Haye, V., Waite, J. H. Jr., Cravens, T. E., Robertson, I. P., et al. 2008. Coupled Ion and Neutral Rotating Model of Titan's Upper Atmosphere. Icarus, 197, 110–136. 10.1016/j.icarus.2008.03.022.Google Scholar
De Vanssay, E., Gazeau, M.-C., Guillemin, J.-C., and Raulin, F. 1995. Experimental Simulation of Titan's Organic Chemistry at Low Temperature. Planet. Space Sci., 43, 25–31. 10.1016/0032-0633(94)00146-I.Google Scholar
Delitsky, M. L., and McKay, C. P. 2010. The Photochemical Products of Benzene in Titan's Upper Atmosphere. Icarus, 207, 477–484. 10.1016/j.icarus.2009.11.002.Google Scholar
Deschenaux, Ch., Affolter, A., Magni, D., Hollenstein, Ch., et al. 1999. Investigations of CH4, C2H2 and C2H4 Dusty RF Plasmas by Means of FTIR Absorption Spectroscopy and Mass Spectrometry. J. Phys. D: Appl. Phys., 32, 1876–1886. 10.1088/0022-3727/32/15/316.Google Scholar
Dire, J. R. 2000. Seasonal Photochemical and Meridional Transport Model for the Stratosphere of Titan. Icarus, 145, 428–444. 10.1006/icar.2000.6342.Google Scholar
Dransfeld, P., and Wagner, H.Gg. 1987. Investigation of the Gas Phase Reaction N + NH2 — N2 + 2H at Room Temperature. Z. Phys. Chem., 153, 89–97. 10.1524/zpch.1987.153.Part-1-2.089.Google Scholar
Dujardin, G., Winkoun, D., and Leach, S. 1985. Double Photoionization of Methane. Phys. Rev. A, 31, 3027–3038. 10.1103/PhysRevA.31.3027.Google Scholar
Edberg, N. J. T., Wahlund, J.-E., Agren, K., Morooka, M. W., et al. 2010. Electron Density and Temperature Measurements in the Cold Plasma Environment of Titan: Implications for Atmospheric Escape. Geophys. Res. Lett., 37, L20105. 10.1029/2010GL044544.Google Scholar
Edwards, S. J., Freeman, C. G., and McEwan, M. J. 2008. The Ion Chemistry of Methylenimine and Propionitrile and Their Relevance to Titan. Int. J. Mass Spectrom., 272, 86–90. 10.1016/j.ijms.2008.01.006.Google Scholar
Edwards, S. J., Freeman, C. G., and McEwan, M. J. 2009. Some Ion Chemistry of HC5N. Int. J. Mass Spectrom., 279, 82–86. 10.1016/j.ijms.2008.10.003.Google Scholar
Ehrenfreund, P., Boon, J. J., Commandeur, J., Sagan, C., et al. 1995. Analytical Pyrolysis Experiments of Titan Aerosol Analogues in Preparation for the Cassini Huygens Mission. Adv. Space Res., 15, 335–42. 10.1016/S0273-1177(99)80105-7.Google Scholar
El-Shall, M. S., Ibrahim, Y. M., Alsharaeh, E. H., Meot-Ner, M., et al. 2009. Reactions between Aromatic Hydrocarbons and Heterocycles: Covalent and Proton-Bound Dimer Cations of Benzene/Pyridine. J.Am. Chem. Soc., 131, 10066–10076. 10.1021/ja901130d.Google Scholar
Eland, J. H. D., 2006. Double Photoionisation Spectra of Methane, Ammonia and Water. Chem. Phys., 323, 391–396. 10.1016/j.chemphys.2005.09.047.Google Scholar
Fahr, A. 2003. Ultraviolet Absorption Spectrum and Cross-Sections of Ethynyl (C2H) Radicals. J. Mol. Spectrosc., 217, 249–254. 10.1016/S0022-2852(02)00039-5.Google Scholar
Faure, A., Vuitton, V, Thissen, R., Wiesenfeld, L., et al. 2010. Fast Ion-Molecule Reactions in Planetary Atmospheres: A Semiempirical Capture Approach. Faraday Discuss., 147, 337. 10.1039/c003908j.Google Scholar
Fischer, G., and Gurnett, D. A. 2011. The Search for Titan Lightning Radio Emissions. Geophys. Res. Lett., 38, L08206. 10.1029/2011GL047316.Google Scholar
Florescu-Mitchell, A. I., and Mitchell, J. B. A., 2006. Dissociative Recombination. Phys. Rep., 430, 277–374. 10.1016/j.physrep.2006.04.002.Google Scholar
Fondren, L. D., Adams, N. G., and Stavish, L. 2009. Gas Phase Reactions of CH+ with a Series of Homo- and Heterocyclic Molecules. J. Phys. Chem. A, 113, 592–598. 10.1021/jp8091336.Google Scholar
Fox, J. L., and Yelle, R. V 1997. Hydrocarbon Ions in the Ionosphere of Titan. Geophys. Res. Lett., 24, 2179–2182. 10.1029/97GL02051.Google Scholar
Franceschi, P., Ascenzi, D., Tosi, P., Thissen, R., et al. 2007. Dissociative Double Photoionization of N2 Using Synchrotron Radiation: Appearance Energy of the N++ Dication. J. Chem. Phys., 126, 4310. 10.1063/1.2714521.Google Scholar
Fray, N., and Schmitt, B. 2009. Sublimation of Ices of Astrophysical Interest: A Bibliographic Review. Planet. Space Sci., 57, 2053–2080. 10.1016/j.pss.2009.09.011.Google Scholar
Fulchignoni, M., Ferri, F., Angrilli, F., Ball, A. J., et al. 2005. In Situ Measurements of the Physical Characteristics of Titan's Environment. Nature, 438, 785–791. 10.1038/nature04314.Google Scholar
Galand, M., Lilensten, J., Toublanc, D., and Maurice, S. 1999. The Ionosphere of Titan: Ideal Diurnal and Nocturnal Cases. Icarus, 140, 92–105. 10.1006/icar.1999.6113.Google Scholar
Galand, M., Yelle, R., Cui, J., Wahlund, J.-E., et al. 2010. Ionization Sources in Titan's Deep Ionosphere. J. Geophys. Res., 115, A07312. A07312 10.1029/2009ja015100.Google Scholar
Gan, L., Keller, C. N., and Cravens, T. E. 1992. Electrons in the Ionosphere of Titan. J. Geophys. Res., 97, 12137–12151. 10.1029/92JA00300.Google Scholar
Gannon, K. L., Glowacki, D. R., Blitz, M. A., Hughes, K. J., et al. 2007. H Atom Yields from the Reactions of CN Radicals with C2H2, C2H4, C3H6, trans-2-C4H8, and iso-C4H8. J. Phys. Chem. A, 111, 6679–6692. 10.1021/jp0689520.Google Scholar
Gannon, K. L., Blitz, M. A., Liang, C.-H., Pilling, M. J., et al. 2010. An Experimental and Theoretical Investigation of the Competition between Chemical Reaction and Relaxation for the Reactions of 1CH2 with Acetylene and Ethene: Implications for the Chemistry of the Giant Planets. Faraday Discuss., 147, 173–188. 10.1039/c004131a.Google Scholar
Gans, B., Boyé-Péronne, S., Broquier, M., Delsaut, et al. 2011. Photolysis of Methane Revisited at 121.6 nm and at 118.2 nm: Quantum Yields of the Primary Products, Measured by Mass Spectrometry. Phys. Chem. Chem. Phys., 13, 8140–8152. 10.1039/c0cp02627a.Google Scholar
Geppert, W. D., and Larsson, M. 2008. Dissociative Recombination in the Interstellar Medium and Planetary Ionospheres. Mol. Phys., 106, 2199–2226. 10.1080/00268970802322074.Google Scholar
Gichuhi, W. K., and Suits, A. G. 2011. Primary Branching Ratios for the Low-Temperature Reaction of State-Prepared N+ with CH4, C2H2, and C2H4. J Phys. Chem. A, 115, 7105–7111. 10.1021/jp112427r.Google Scholar
Giordana, A., Ghigo, G., Tonachini, G., Ascenzi, D., et al. 2009. The Reaction of N2O with Phenylium ions C6(H,D)+: An Integrated Experimental and Theoretical Mechanistic Study. J. Chem. Phys., 131, 024304. 10.1063/1.3148366.Google Scholar
Gladstone, G. R., Allen, M., and Yung, Y. L. 1996. Hydrocarbon Photochemistry in the Upper Atmosphere of Jupiter. Icarus, 119, 1–52. 10.1006/icar.1996.0001.Google Scholar
Grasset, O., and Pargamin, J. 2005. The Ammonia-Water System at High Pressures: Implications for the Methane of Titan. Planet. Space Sci., 53, 371–384. 10.1016/j.pss.2004.09.062.Google Scholar
Gronoff, G., Lilensten, J., Desorgher, L., and Flückiger, E. 2009. Ionization Processes in the Atmosphere of Titan I. Ionization in the Whole Atmosphere. Astron. Astrophys., 506, 955–964. 10.1051/0004-6361/200912371.Google Scholar
Gu, X., Kim, Y. S., Kaiser, R. I., Mebel, A. M., et al. 2009. Chemical Dynamics of Triacetylene Formation and Implications to the Synthesis of Polyynes in Titan's Atmosphere. PNAS, 106, 16078–16083. 10.1073/pnas.0900525106.Google Scholar
Gurwell, M. 2004. Submillimeter Observations of Titan: Global Measures of Stratospheric Temperature, CO, HCN, HC3N, and the Isotopic Ratios 12C/13C and 14N/15N. Astrophys. J., 616, L7–L10. 10.1086/423954.Google Scholar
Hadamcik, E., Renard, J.-B., Alcouffe, G., Cernogora, G., et al. 2009. Laboratory Light-Scattering Measurements with Titan's Aerosols Analogues Produced by a Dusty Plasma. Planet. Space Sci., 57, 1631–1641. 10.1016/j.pss.2009.06.013.Google Scholar
Hamelin, M., Béghin, C., Grard, R., López-Moreno, J. J., et al. 2007. Electron Conductivity and Density Profiles Derived from the Mutual Impedance Probe Measurements Performed during the Descent of Huygens through the Atmosphere of Titan. Planet. Space Sci., 55, 1964–1977. 10.1016/j.pss.2007.04.008.Google Scholar
Hansel, A., Glantschnig, M., Scheiring, C., Lindinger, W., et al. 1998a. Energy Dependence of the Isomerization of HCN+ to HNC+ via Ion Molecule Reactions. J. Chem. Phys., 109, 1743–1747. 10.1063/1.476748.Google Scholar
Hansel, A., Scheiring, C., Glantschnig, M., Lindinger, W., et al. 1998b. Thermochemistry of HNC, HNC+, and CF+. J. Chem. Phys., 109, 1748–1750. 10.1063/1.476749.Google Scholar
Hartle, R. E., Sittler, E. C. Jr., Neubauer, F. M., Johnson, R. E., et al. 2006. Initial Interpretation of Titan Plasma Interactions as Observed by the Cassini Plasma Spectrometer: Comparisons with Voyager 1. Planet. Space Sci., 54, 1211–1224. 10.1029/2005GL024817.Google Scholar
He, C., Lin, G., Upton, K., Imanaka, H., et al. 2012a. Structural Investigation of HCN Polymer Isotopomers by Solution-State Multidimensional NMR. J. Phys. Chem. A, 116, 4751–4759. 10.1021/jp301604f.Google Scholar
He, C., Lin, G., Upton, K., Imanaka, H., et al. 2012b. Structural Investigation of Titan Tholins by Solution-State 1H, 13C and 15NNMR: 1-Dimensional and Decoupling Experiments. J. Phys. Chem. A, 116, 4760–4767. 10.1021/jp3016062.Google Scholar
Hébrard, E., Bénilan, Y., and Raulin, F. 2005. Sensitivity Effects of Photochemical Parameters Uncertainties on Hydrocarbon Production in the Atmosphere of Titan. Adv. Space Res., 36, 268–273. 10.1016/j.asr.2005.03.093.Google Scholar
Hébrard, E., Dobrijevic, M., Bénilan, Y., and Raulin, F. 2006. Photochemical Kinetics Uncertainties in Modeling Titan's Atmosphere: A Review. J. Photochem. Photobiol. C, 7, 211–230. 10.1016/j.jphotochemrev.2006.12.004.Google Scholar
Hébrard, E., Dobrijevic, M., Bénilan, Y., and Raulin, F. 2007. Photochemical Kinetics Uncertainties in Modeling Titan's Atmosphere: First Consequences. Planet. Space Sci., 55, 1470–1489. 10.1016/j.pss.2007.04.006.Google Scholar
Hébrard, E., Dobrijevic, M., Pernot, P., Carrasco, N., et al. 2009. How Measurements of Rate Coefficients at Low Temperature Increase the Predictivity of Photochemical Models of Titan's Atmosphere. J. Phys. Chem. A, 113, 11227–11237. 10.1021/jp905524e.Google Scholar
Heck, A. J. R., Zare, R. N., and Chandler, D. W. 1996. Photofragment Imaging of Methane. J. Chem. Phys., 104, 4019–4030. 10.1063/1.471214.Google Scholar
Helbert, J., Rauer, H., Boice, D. C., and Huebner, W. F. 2005. The Chemistry of C2 and C3 in the Coma of Comet C/1995 O1 (Hale-Bopp) at Heliocentric Distances rh > 2.9 AU. Astron. Astrophys., 442, 1107–1120. 10.1051/0004-6361:20041571.Google Scholar
Helm, H., and Cosby, P. C. 1989. Product Branching in Predissociation of the e 1 Πu, e' 1Σ+u, and b' 1Σ+u States of N2. J. Chem. Phys., 90, 4208–4215. 10.1063/1.455777.Google Scholar
Herbst, E., and Osamura, Y. 2008. Calculations on the Formation Rates and Mechanisms for CnH Anions in Interstellar and Circumstellar Media. Astrophys. J., 679, 1670–1679. 10.1086/587803.Google Scholar
Herron, J. T. 1999. Evaluated Chemical Kinetics Data for Reactions of N(2D), N(2P), and N2(A3E-)inthe Gas Phase. J. Phys. Chem. Ref Data, 28, 1453–1483. 10.1063/1.556043.Google Scholar
Hickman, A. P. 1979. Approximate Scaling Formula for Ion-Ion Mutual Neutralization Rates. J. Chem. Phys., 70, 4872–4878. 10.1063/1.437364.Google Scholar
Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B. 1964. Molecular Theory of Gases and Liquids. 2nd ed. New York: Wiley.
Hörst, S. M., Vuitton, V, and Yelle, R. V 2008. The Origin of Oxygen Species in Titan's Atmosphere. J. Geophys. Res., 113, E10006. 10.1029/2008JE003135.Google Scholar
Hörst, S. M., Yelle, R. V, Buch, A., Carrasco, N., et al. 2012. Formation of Amino Acids and Nucleotide Bases in a Titan Atmosphere Simulation Experiment. Astrobiology, 12, 809–817.Google Scholar
Horvath, G., Aranda-Gonzalvo, Y., Mason, N. J., Zahoran, M., et al. 2010. Negative Ions Formed in N2/CH4/Ar Discharge – A Simulation of Titan's Atmosphere Chemistry. Eur. Phys.J. Appl.Phys., 49, 13105. 10.1051/epjap/2009192.Google Scholar
Imanaka, H., and Smith, M. A. 2007. Role of Photoionization in the Formation of Complex Organic Molecules in Titan's Upper Atmosphere. Geophys. Res. Lett., 34, L02204. 10.1029/2006GL028317.Google Scholar
Imanaka, H., and Smith, M. A. 2009. EUV Photochemical Production of Unsaturated Hydrocarbons: Implications to EUV Photochemistry in Titan and Jovian Planets. J. Phys. Chem. A, 113, 11187–11194. 10.1021/jp9041952.Google Scholar
Imanaka, H., and Smith, M. A. 2010. Formation of Nitrogenated Organic Aerosols in the Titan Upper Atmosphere. PNAS, 107, 12423–12428. 10.1073/pnas.0913353107.Google Scholar
Imanaka, H., Khare, B. N., Elsila, J. E., Bakes, E. L. O., et al. 2004. Laboratory Experiments of Titan Tholin Formed in Cold Plasma at Various Pressures: Implications for Nitrogen-Containing Polycyclic Aromatic Compounds in Titan Haze. Icarus, 168, 344–366. 0.1016/j.icarus.2003.12.014.Google Scholar
Ip, W. H. 1990. Titan's Upper Ionosphere. Astrophys. J., 362, 354–363. 10.1086/169271.Google Scholar
Israël, G., Szopa, C., Raulin, F., Cabane, M., et al. 2005. Complex Organic Matter in Titan's Atmospheric Aerosols from In Situ Pyrolysis and Analysis. Nature, 438, 796–799. 10.1038/nature04349.Google Scholar
Itikawa, Y. 2006. Cross Sections for Electron Collisions with Nitrogen Molecules. J. Phys. Chem. Ref. Data, 35, 31–53. 10.1063/1.1937426.Google Scholar
Jacox, M. E. 2003. Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules. Supplement B. J. Phys. Chem. Ref. Data, 32, 1–441. 10.1063/1.1497629.Google Scholar
Jolly, A., and Bénilan, Y. 2008. Review of Quantitative Spectroscopy of Polyynes. J. Quant. Spectrosc. Radiat. Transfer, 109, 963–973. 10.1016/j.jqsrt.2007.12.010.Google Scholar
Jones, B., Zhang, F., Maksyutenko, P., Mebel, A. M., et al. 2010. Crossed Molecular Beam Study on the Formation of Phenylacetylene and Its Relevance to Titan's Atmosphere. J. Phys. Chem. A, 114, 5256–5262. 10.1021/jp912054p.Google Scholar
Kaiser, R. I., and Balucani, N. 2001. The Formation of Nitrites in Hydrocarbon-Rich Atmospheres of Planets and Their Satellites: Laboratory Investigations by the Crossed Molecular Beam Technique. Acc. Chem. Res., 34, 699–706. 10.1021/ar000112v.Google Scholar
Kella, D., Johnson, P. J., Pedersen, H. B., Vej by-Christensen, L., et al. 1996. Branching Ratios for Dissociative Recombination of 15N14N+. Phys. Rev. Lett., 77, 2432–2435. 10.1103/PhysRevLett.77.2432.Google Scholar
Keller, C. N., Cravens, T. E., and Gan, L. 1992. A Model of the Ionosphere of Titan. J. Geophys. Res., 97, 12117–12135. 10.1029/92JA00231.Google Scholar
Keller, C. N., Anicich, V G., and Cravens, T. E. 1998. Model of Titan's Ionosphere with Detailed Hydrocarbon Ion Chemistry. Planet. Space Sci., 46, 1157–1174. 10.1016/S0032-0633(98)00053-1.Google Scholar
Khare, B. N., Sagan, C., Ogino, H., Nagy, B., et al. 1986. Amino Acids Derived from Titan Tholins. Icarus, 68, 176–184. 10.1016/0019-1035(86)90080-1.Google Scholar
Kim, S. J., Jung, A., Sim, C. K., Courtin, R., et al. 2011. Retrevial and Tentative Identification of the 3 μm Spectral Feature in Titan's Haze. Planet. Space Sci., 59, 699–704. 10.1016/j.pss.2011.02.002.Google Scholar
Kliore, A. J., Nagy, A. F., Marouf, E. A., French, R. G., et al. 2008. First Results from the Cassini Radio Occultations of the Titan Ionosphere. J. Geophys. Res., 113, A09317. 10.1029/2007JA012965.Google Scholar
Koskinen, T. T., Yelle, R. V., Snowden, D. S., Lavvas, P., et al. 2011. The Mesosphere and Thermosphere of Titan Revealed by Cassini/UVIS Stellar Occultations. Icarus, 216, 507–534. 10.1016/j.icarus.2011.09.022.Google Scholar
Krasnopolsky, V. A. 2009. A Photochemical Model of Titan's Atmosphere and Ionosphere. Icarus, 201, 226–256. 10.1016/j.icarus.2008.12.038.Google Scholar
Krasnopolsky, V. A. 2010. The Photochemical Model of Titan's Atmosphere and Ionosphere: A Version without Hydrodynamic Escape. Planet. Space Sci., 58, 1507–1515. 10.1016/j.pss.2010.07.010.Google Scholar
Lara, L. M., Lorenz, R. D., and Rodrigo, R. 1994. Liquids and Solids on the Surface of Titan: Results of a New Photochemical Model. Planet. Space Sci., 42, 5–14. 10.1016/0032-0633(94)90135-X.Google Scholar
Lara, L. M., Lellouch, E., López-Moreno, J. J., and Rodrigo, R. 1996. Vertical Distribution of Titan's Atmospheric Neutral Constituents. J. Geophys. Res., 101, 23261–23283. 10.1029/96JE02036.Google Scholar
Lara, L. M., Lellouch, E., and Shematovich, V 1999. Titan's Atmospheric Haze: The Case for HCN Incorporation. Astron. Astrophys., 341, 312–317.Google Scholar
Larsson, M., and Orel, A. E. 2008. Dissociative Recombination of Molecular Ions. Cambridge, UK: Cambridge University Press.
Laufer, A. H., and Fahr, A. 2004. Reactions and Kinetics of Unsaturated C2 Hydrocarbon Radicals. Chem. Rev., 104, 2813–2832. 10.1021/cr030039x.Google Scholar
Laufer, A. H., Gardner, E. P., Kwok, T. L., and Yung, Y. L. 1983. Computations and Estimates of Rate Coefficients for Hydrocarbon Reactions of Interest to the Atmospheres of the Outer Solar System. Icarus, 56, 560–567. 10.1016/0019-1035(83)90173-2.Google Scholar
Läuter, A., Lee, K. S., Jung, K. H., Vatsa, R. K., et al. 2002. Absolute Primary H Atom Quantum Yield Measurements in the 193.3 and 121.6 nm Photodissociation of Acetylene. Chem. Phys. Lett., 358, 314–319. 10.1016/S0009-2614(02)00625-5.Google Scholar
Lavvas, P., Coustenis, A., and Vardavas, I. M. 2008a. Coupling Photochemistry with Haze Formation in Titan's Atmosphere. Part I: Model Description. Planet. Space Sci., 56, 27–66. 10.1016/j.pss.2007.05.026.Google Scholar
Lavvas, P., Coustenis, A., and Vardavas, I. M. 2008b. Coupling Photochemistry with Haze Formation in Titan's Atmosphere. Part II: Results and Validation with Cassini/Huygens Data. Planet. Space Sci., 56, 67–99. 10.1016/j.pss.2007.05.027.Google Scholar
Lavvas, P., Yelle, R. V, and Vuitton, V 2009. The Detached Haze Layer in Titan's Mesosphere. Icarus, 201, 626–633. 10.1016/j.icarus.2009.01.004.Google Scholar
Lavvas, P., Yelle, R. V, and Griffith, C. A. 2010. Titan's Vertical Aerosol Structure at the Huygens Landing Site: Constraints on Particle Size, Density, Charge, and Refractive Index. Icarus, 210, 832–842. 10.1016/j.icarus.2010.07.025.Google Scholar
Lavvas, P., Galand, M., Yelle, R. V, Heays, A. N., et al. 2011a. Energy Deposition and Primary Chemical Products in Titan's Upper Atmosphere. Icarus, 213, 233–251. 10.1016/j.icarus.2011.03.001.Google Scholar
Lavvas, P., Sander, M., Kraft, M., and Imanaka, H. 2011b. Surface Chemistry and Particle Shape. Processes for the Evolution of Aerosols in Titan's Atmosphere. Astrophys. J., 728, 80–90. 10.1088/0004-637X/728/2/80.Google Scholar
Lebonnois, S. 2005. Benzene and Aerosol Production in Titan and Jupiter's Atmospheres: A Sensitivity Study. Planet. Space Sci., 53, 486–497. 10.1016/j.pss.2004.11.004.Google Scholar
Lebonnois, S., and Toublanc, D. 1999. Actinic Fluxes in Titan's Atmosphere, from One to Three Dimensions: Application to High-Latitude Composition. J. Geophys. Res., 104, 22025–22034. 10.1029/1999JE001056.Google Scholar
Lebonnois, S., Toublanc, D., Hourdin, F., and Rannou, P. 2001. Seasonal Variations of Titan's Atmospheric Composition. Icarus, 152, 384–406. 10.1006/icar.2001.6632.Google Scholar
Lebonnois, S., Bakes, E. L. O., and McKay, C. P. 2002. Transition from Gaseous Compounds to Aerosols in Titan's Atmosphere. Icarus, 159, 505–517. 10.1006/icar.2002.6943.Google Scholar
Lebonnois, S., Bakes, E. L. O., and McKay, C. P. 2003. Atomic and Molecular Hydrogen Budget in Titan's Atmosphere. Icarus, 161, 474–485. 10.1016/S0019-1035(02)00039-8.Google Scholar
Lee, S.-H., Chin, C.-H., Chen, W.-K., Huang, W.-J., et al. 2011. Exploring the Dynamics of Reaction N(2D) + C2H4 with Crossed Molecular-Beam Experiments and Quantum-Chemical Calculations. Phys. Chem. Chem. Phys., 13, 8515–8525. 10.1039/c0cp02439b.Google Scholar
Liang, M.-C., Yung, Y. L., and Shemansky, D. E. 2007a. Photolytically Generated Aerosols in the Mesosphere and Thermosphere of Titan. Astrophys. J., 661, L199–L202. 10.1086/518785.Google Scholar
Liang, M.-C., Heays, A. N., Lewis, B. R., Gibson, S. T., et al. 2007b. Source of Nitrogen Isotope Anomaly in HCN in the Atmosphere of Titan. Astrophys. J., 664, L115–L118. 10.1086/520881.Google Scholar
Lide, D. R. (ed). 2006. CRC Handbook of Chemistryand Physics. 87th ed. Boca Raton, FL: CRC Press.
Lilensten, J., Witasse, O., Simon, C., Soldi-Lose, H., et al. 2005. Prediction of a N++ Layer in the Upper Atmosphere of Titan. Geophys. Res. Lett., 32, L03202. 10.1029/2004GL021432.Google Scholar
López-Moreno, J. J., Molina-Cuberos, G. J., Hamelin, M., Grard, R., et al. 2008. Structure of Titan's Low Altitude Ionized Layer from the Relaxation Probe Onboard HUYGENS. Geophys. Res. Lett., 35, L22104. 10.1029/2008GL035338.Google Scholar
Lorenz, R. D., Mitchell, K. L., Kirk, R. L., Hayes, A. G., etal. 2008. Titan's Inventory of Organic Surface Materials. Geophys. Res. Lett., 35, L02206. 10.1029/2007GL032118.Google Scholar
Luine, J. A., and Dunn, G. H. 1985. Ion-Molecule Reaction Probabilities Near 10 K. Astrophys. J., 299, L67–L70. 10.1086/184582.Google Scholar
Lunine, J. I., and Stevenson, D. J. 1987. Clathrates and Ammonia Hydrates at High Pressure: Application to the Origin of Methane on Titan. Icarus, 70, 61–77. 10.1016/0019-1035(87)90075-3.Google Scholar
Magee, B. A., Waite, J. H. Jr., Mandt, K. E., Westlake, J., etal. 2009. INMS-Derived Composition of Titan's Upper Atmosphere: Analysis Methods and Model Comparison. Planet. Space Sci., 57, 1895–1916. 10.1016/j.pss.2009.06.016.Google Scholar
Marten, A., Hidayat, T., Biraud, Y., and Moreno, R. 2002. New Millimeter Heterodyne Observations of Titan: Vertical Distributions of Nitriles HCN, HC3N, CH3CN, and the Isotopic Ratio 15N/14NinIts Atmosphere. Icarus, 158, 532–544. 10.1006/icar.2002.6897.Google Scholar
Mason, E. A., and Marrero, T. R. 1970. The diffusion of Atoms and Molecules. Adv. Atom. Mol. Phys., 6, 155–232. 10.1016/S0065-2199(08)60205-5.Google Scholar
Mathews, L. D., and Adams, N. G. 2011. Experimental Study of the Gas Phase Chemistry of C3H+ with Several Cyclic Molecules. Int. J. Mass Spectrom., 299, 139–144. 10.1016/j.ijms.2010.10.008.Google Scholar
Mathur, D., Andersen, L. H., Hvelplund, P., Kella, D., et al. 1995. Long-Lived, Doubly Charged Diatomic and Triatomic Molecular Ions. J. Phys. B: At. Mol. Opt. Phys., 28, 3415–3426. 10.1088/0953-4075/28/15/027.Google Scholar
McCarthy, M. C., Gottlieb, C. A., Gupta, H., and Thaddeus, P. 2006. Laboratory and Astronomical Identification of the Negative Molecular Ion C6H-. Astrophys. J., 652, L141–L144. 10.1086/510238.Google Scholar
McDonald, G. D., Khare, B. N., Thompson, W. R., and Sagan, C. 1991. CH4/NH3/H2O Spark Tholin: Chemical Analysis and Interaction with Jovian Aqueous Clouds. Icarus, 94, 354–367. 10.1016/0019-1035(91)90234-K.Google Scholar
McDonald, G. D., Thompson, W. R., Heinrich, M., Khare, B. N., et al. 1994. Chemical Investigation of Titan and Triton Tholins. Icarus, 108, 137–145. 10.1006/icar.1994.1046.Google Scholar
McEwan, M. J., and Anicich, V G. 2007. Titan's Ion Chemistry: A Laboratory Perspective. Mass Spectrom. Rev., 26, 281–319. 10.1002/mas.20117.Google Scholar
McEwan, M. J., Anicich, V. G., Huntress, W. T. Jr., Kemper, P. R., et al. 1983. Reactions of CN+ and C2N+ Ions. Int. J. Mass Spectrom. Ion Process., 50, 179–187. 10.1016/0020-7381(83)80008-4.Google Scholar
McEwan, M. J., Scott, G. B. I., and Anicich, V G. 1998. Ion-Molecule Reactions Relevant to Titan's Ionosphere. Int. J. Mass Spectrom. Ion Process., 172, 209–219. 10.1016/S0168-1176(97)00236-X.Google Scholar
McKay, C. P. 1996. Elemental Composition, Solubility, and Optical Properties of Titan's Organic Haze. Planet. Space Sci., 44, 741–747. 10.1016/0032-0633(96)00009-8.Google Scholar
McKay, C. P., Coustenis, A., Samuelson, R. E., Lemmon, M. T., et al. 2001. Physical Properties of the Organic Aerosols and Clouds on Titan. Planet. Space Sci., 49, 79–99. 10.1016/S0032-0633(00)00051-9.Google Scholar
McLain, J. L., and Adams, N. G. 2009. Flowing Afterglow Studies of Temperature Dependencies for Electron Dissociative Recombination of HCNH+,CH3CNH+ and CH3CH2CNH+ and Their Symmetrical Proton-Bound Dimers. Planet. Space Sci., 57, 1642–1647. 10.1016/j.pss.2009.09.005.Google Scholar
McLain, J. L., Molek, C. D., Osborne, D. Jr., and Adams, N. G. 2009. Flowing Afterglow Studies of the Electron Recombination of Protonated Cyanides (RCN)H+ and Their Proton-Bound Dimer Ions (RCN)(2)H+ where R is H, CH3, and CH3CH2. Int. J. Mass Spectrom., 282, 85–90. 10.1016/j.ijms.2009.02.004.Google Scholar
Mebel, A. M., Hayashi, M., Jackson, W. M., Wrobel, J., et al. 2001. Branching Ratios of C2 Products in the Photodissociation of C2H at 193 nm. J. Chem. Phys., 114, 9821–9831. 10.1063/1.1370942.Google Scholar
Michael, J. V, and Lee, J. H. 1977. Selected Rate Constants for H, O, N, and Cl Atoms with Substrates at Room Temperatures. Chem. Phys. Lett., 51, 303–306. 10.1016/0009-2614(77)80408-9.Google Scholar
Millar, T. J., Walsh, C., Cordiner, M. A., Ni Chuimin, R., et al. 2007. Hydrocarbon Anions in Interstellar Clouds and Circumstellar Envelopes. Astrophys. J., 662, L87–L90. 10.1086/519376.Google Scholar
Milligan, D. B., Wilson, P. F., Freeman, C. G., Meot-Ner, M., et al. 2002. Dissociative Proton Transfer Reactions of H+, N2H+, and H3O+ with Acyclic, Cyclic, and Aromatic Hydrocarbons and Nitrogen Compounds, and Astrochemical Implications. J. Phys. Chem. A, 106, 9745–9755. 10.1021/jp014659i.Google Scholar
Minard, R. D., Hatcher, P. G., Gourley, R. C., and Matthews, C. N. 1993. Structural Investigations of Hydrogen Cyanide Polymers: New Insights Using TMAH Thermochemolysis/GC-MS. Orig. Life Evol. Biosph., 28, 461–473. 10.1023/A:1006566125815.Google Scholar
Mitri, G., Showman, A. P., Lunine, J. I., and Lopes, R. M. C., 2008. Resurfacing of Titan by Ammonia-Water Cryomagma. Icarus, 196, 216–224. 10.1016/j.icarus.2008.02.024.Google Scholar
Mitsuke, K., Suzuki, S., Imamura, T., and Koyano, I. 1991. Negative-Ion Mass Spectrometric Study of Ion-Pair Formation in the Vacuum Ultraviolet. IV. CH4 → H- + CH3+ and CD4 → D- + CD3+. J. Chem. Phys., 94, 6003–6006. 10.1063/1.460435.Google Scholar
Molina-Cuberos, G. J., López-Moreno, J. J., Rodrigo, R., Lara, L. M., et al. 1999a. Ionization by Cosmic Rays of the Atmosphere of Titan. Planet. Space Sci., 47, 1347–1354. 10.1016/S0032-0633(99)00056-2.Google Scholar
Molina-Cuberos, G. J., López-Moreno, J. J., Rodrigo, R., and Lara, L. M. 1999b. Chemistry of the Galactic Cosmic Ray Induced Ionosphere of Titan. J. Geophys. Res., 104, 21997–22024. 10.1029/1998JE001001.Google Scholar
Molina-Cuberos, G. J., López-Moreno, J. J., and Rodrigo, R. 2000. Influence of Electrophilic Species on the Lower Ionosphere of Titan. Geophys. Res. Lett., 27, 1351–1354. 10.1029/1999GL010771.Google Scholar
Molina-Cuberos, G. J., Lammer, H., Stumptner, W., Schwingenschuh, K., et al. 2001. Ionospheric Layer Induced by Meteoric Ionization in Titan's Atmosphere. Planet. Space Sci., 49, 143–153. 10.1016/S0032-0633(00)00133-1.Google Scholar
Molina-Cuberos, G. J., Schwingenschuh, K., López-Moreno, J. J., Rodrigo, R., et al./2002. Nitriles Produced by Ion Chemistry in the Lower Ionosphere of Titan. J. Geophys. Res., 107, 5099. 10.1029/2000JE001480.Google Scholar
Mordaunt, D. H., Lambert, I. R., Morley, G. P., Ashfold, M. N. R., et al. 1993. Primary Product Channels in the Photodissociation of Methane at 121.6 nm. J. Chem. Phys., 98, 2054–2065. 10.1063/1.464237.Google Scholar
Neish, C. D., Lorenz, R. D., O'Brien, D. P., and the Cassini RADAR Team. 2006. The Potential for Prebiotic Chemistry in the Possible Cryovolcanic Dome Ganesa Macula on Titan. Int. J. Astrobiol., 5, 57–65. 10.1017/S1473550406002898.Google Scholar
Neish, C. D., Somogyi, A., Imanaka, H., Lunine, J. I., et al. 2008. Rate Measurements of the Hydrolysis of Complex Organic Macromolecules in Cold Aqueous Solutions: Implications for Prebiotic Chemistry on the early Earth and Titan. Astrobiology, 8, 273–287. 10.1089/ast.2007.0193.Google Scholar
Neish, C. D., Somogyi, A., Lunine, J. I., and Smith, M. A. 2009. Low Temperature Hydrolysis of Laboratory Tholins in Ammonia-Water Solutions: Implications for Prebiotic Chemistry on Titan. Icarus, 201, 412–421. 10.1016/j.icarus.2009.01.003.Google Scholar
Neish, C. D., Somogyi, A., and Smith, M. A. 2010. Titan's Primordial Soup: Formation of Amino Acids via Low-Temperature Hydrolysis of Tholins. Astrobiology, 10, 337–347. 10.1089/ast.2009.0402.Google Scholar
Nicolas, C., Alcaraz, C., Thissen, R., Vervloet, M., et al. 2003a. Dissociative Photoionization of N2 in the 24-32 eV Photon Energy Range. J. Phys. B: At. Mol. Opt. Phys., 36, 2239–2251. 10.1088/0953-4075/36/11/309.Google Scholar
Nicolas, C., Torrents, R., and Gerlich, D. 2003b. Integral and Differential Cross Section Measurements at Low Collision Energies for the N2+ + CH4/CD4 Reactions. J. Chem. Phys., 118, 2723–2730. 10.1063/1.1535423.Google Scholar
Niemann, H. B., Atreya, S. K., Demick, J. E., Gautier, D., et al. 2010. Composition of Titan's Lower Atmosphere and Simple Surface Volatiles as Measured by the Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer Experiment. J. Geophys. Res., 115, E12006. 10.1029/2010JE003659.Google Scholar
Nixon, C. A., Jennings, D. E., Flaud, J.-M., Bézard, B., et al. 2009. Titan's Prolific Propane: The Cassini CIRS Perspective. Planet. Space Sci., 57, 1573–1585. 10.1016/j.pss.2009.06.021.Google Scholar
O'Brien, D. P., Lorenz, R. D., and Lunine, J. I. 2005. Numerical Calculations of the Longevity of Impact Oases on Titan. Icarus, 173, 243–253. 10.1016/j.icarus.2004.08.001.Google Scholar
Okabe, H. 1981. Photochemistry of Acetylene at 1470 A. J Chem. Phys., 75, 2772–2778. 10.1063/1.442348.Google Scholar
Okabe, H. 1983. Photochemistry of Acetylene at 1849 A. J. Chem. Phys., 78, 1312–1317. 10.1063/1.444868.Google Scholar
Omont, A. 1986. Physics and Chemistry of Interstellar Polycyclic Aromatic Molecules. Astron. Astrophys., 164, 159–178.Google Scholar
Peng, Z., Dobrijevic, M., Hébrard, E., Carrasco, N., et al. 2010. Photochemical Modeling of Titan Atmosphere at the “10 Percent Uncertainty Horizon.”Faraday Discuss., 147, 137–153. 10.1039/c003366a.Google Scholar
Pernot, P., Carrasco, N., Thissen, R., and Schmitz-Afonso, I. 2010. Tholinomics: Chemical Analysis of Nitrogen-Rich Polymers. Anal. Chem., 82, 1371–1380. 10.1021/ac902458q.Google Scholar
Peterson, J. R., and Moseley, J. T. 1973. Time-of-Flight Determination of Lifetimes of N2+(A2Pu), the Meinel Band System. J. Chem. Phys., 58, 172–177. DOI:10.1063/1.1678901.Google Scholar
Peterson, J. R., Le Padellec, A., Danared, H., Dunn, G. H., et al. 1998. Dissociative Recombination and Excitation of N2+: Cross Sections and Product Branching Ratios. J. Chem. Phys., 108, 1978–1988. 10.1063/1.475577.Google Scholar
Petrie, S. 1996. Novel Pathways to CN- within Interstellar Clouds and Circumstellar Envelopes: Implications for IS and CS Chemistry. Mon. Not. R. Astron. Soc., 281, 137–144.Google Scholar
Pietrogrande, M. C., Coll, P., Sternberg, R., Szopa, C., etal. 2001. Analysis of Complex Mixtures Recovered from Space Missions. Statistical Approach to the Study of Titan Atmosphere Analogues (Tholins). J. Chromat. A, 939, 69–77. 10.1016/S0021-9673(01)01333-4.Google Scholar
Piper, L. G. 1993. Reevaluation of the Transition-Moment Function and Einstein Coefficients for the N2(A3 Σu+ — X1Σg+) Transition. J. Chem. Phys., 99, 3174–3181. DOI:10.1063/1.465178.Google Scholar
Plessis, S., Carrasco, N., and Pernot, P. 2010. Knowledge-Based Probabilistic Representations of Branching Ratios in Chemical Networks: The Case of Dissociative Recombinations. J. Chem. Phys., 133, 134110. 10.1063/1.3479907.Google Scholar
Quirico, E., Montagnac, G., Lees, V, McMillan, P. F., et al. 2008. New Experimental Constraints on the Composition and Structure of Tholins. Icarus, 198, 218–231. 10.1016/j.icarus.2008.07.012.Google Scholar
Rages, K., and Pollack, J. B. 1980. Titan Aerosols: Optical Properties and Vertical Distribution. Icarus, 41, 119–130. 10.1016/0019-1035(80)90164-5.Google Scholar
Rages, K., Pollack, J. B., and Smith, P. H. 1983. Size Estimated of Titan's Aerosols Based on Voyager High-Phase-Angle Images. J. Geophys. Res., 88, 8721–8728. 10.1029/JA088iA11p08721.Google Scholar
Ralchenko, Yu., Kramida, A. E., Reader, J., and the NIST ASD Team. 2011. NIST Atomic Spectra Database (version 4.1.0). National Institute of Standards and Technology, Gaithersburg MD. Available at: http://physics.nist.gov/asd.
Ram, N. B., and Krishnakumar, E. 2011. Dissociative Electron Attachment to Methane Probed Using Velocity Slice Imaging. Chem. Phys. Lett., 511, 22–27. 10.1016/j.cplett.2011.05.065.Google Scholar
Rannou, P., Cabane, M., Chassefiere, E., Botet, R., et al. 1995. Titan's Geometric Albedo: Role of the Fractal Structure of the Aerosols. Icarus, 118, 355–372. 10.1006/icar.1995.1196.Google Scholar
Rannou, P., McKay, C. P., and Lorenz, R. D. 2003. A Model of Titan's Haze of Fractal Aerosols Constrained by Multiple Observations. Planet. Space Sci., 51, 963–976. 10.1016/j.pss.2003.05.008.Google Scholar
Rannou, P., Cours, T., Le Mouélic, S., Rodriguez, S., et al. 2010. Titan Haze Distribution and Optical Properties Retrieved from Recent Observations. Icarus, 208, 850–867. 10.1016/j.icarus.2010.03.016.Google Scholar
Raulin, F. 1987. Organic Chemistry in the Oceans of Titan. Adv. Space Res., 7(5), 71–81. 10.1016/0273-1177(87)90358-9.Google Scholar
Redondo, P., Pauzat, F., and Ellinger, Y. 2006. Theoretical Survey of the NH + CH3 Potential Energy Surface in Relation to Titan Atmospheric Chemistry. Planet. Space Sci., 54, 181–187. 10.1016/j.pss.2005.10.008.Google Scholar
Remijan, A. J., Hollis, J. M., Lovas, F. J., Cordiner, M. A., et al. 2007. Detection of C8H- and Comparison with C8H toward IRC + 10216. Astrophys. J., 664, L47–L50. 10.1086/520704.Google Scholar
Ricketts, C. L., Schröder, D., Alcaraz, C., and Roithova, J. 2008. Growth of Larger Hydrocarbons in the Ionosphere of Titan. Chem. Eur. J., 14, 4779–4783. 10.1002/chem.200800524.Google Scholar
Robertson, I. P., Cravens, T. E., Waite, J. H. Jr., Yelle, R. V., et al. 2009. Structure of Titan's Ionosphere: Model Comparisons with Cassini Data. Planet. Space Sci., 57, 1834–1846. 10.1016/j.pss.2009.07.011.Google Scholar
Roithova, J., and Schröder, D. 2007. Bond-Formation versus Electron Transfer: C-C Coupling Reactions of Hydrocarbon Dications with Benzene. Phys. Chem. Chem. Phys., 9, 731–738. 10.1039/b615648g.Google Scholar
Romani, P. N. 1996. Recent Rate Constant and Product Measurements of the Reactions C2H3 + H2 and C2H3 + H - Importance for Photochemical Modeling of Hydrocarbons on Jupiter. Icarus, 122, 233–241. 10.1006/icar.1996.0122.Google Scholar
Rowe, B. R., Marquette, J. B., and Rebrion, C. 1989. Mass-selected Ion-Molecule Reactions at Very Low Temperatures: The CRESUS Apparatus. J. Chem. Soc. Faraday Trans. 2, 85, 1631–1641. 10.1039/F29898501631.Google Scholar
Ruscic, B., and Berkowitz, J. 1990. Photoion Pair Formation and Photoelectron Induced Dissociative Attachment in C2H2:D0(HCC-H). J. Chem. Phys., 93, 5586–5593. 10.1063/1.459629.Google Scholar
Sagan, C., and Thompson, W. R. 1984. Production and Condensation of Organic Gases in the Atmosphere of Titan. Icarus, 59, 133–161. 10.1016/0019-1035(84)90018-6.Google Scholar
Sailer, W., Pelc, A., Limao-Vieira, P., Mason, N. J., etal. 2003. Low Energy Electron Attachment to CH3CN. Chem. Phys. Lett., 381, 216–222. 10.1016/j.cplett.2003.09.118.Google Scholar
Samson, J. A. R., Masuoka, T., Pareek, P. N., and Angel, G. C. 1987. Total and Dissociative Photoionization Cross Sections of N2 from Threshold to 107 eVJ. Chem. Phys., 86, 6128–6132. 10.1063/1.452452.Google Scholar
Samson, J. A. R., Haddad, G. N., Masuoka, T., Pareek, P. N., et al. 1989. Ionization Yields, Total Absorption, and Dissociative Photoionization Cross Sections of CH4 from 110 to 950 A. J. Chem. Phys., 90, 6925–6932. 10.1063/1.456267.Google Scholar
Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., et al. 2006. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Evaluation Number 15. JPL Publication 06-2. Pasadena, CA: JPL NASA.
Scattergood, T. W., Lau, E. Y., and Stome, B. M. 1992. Titan's Aerosols I. Laboratory Investigations of Shapes, Size Distributions, and Aggregation of Particles Produced by UV Photolysis of Model Titan Atmospheres. Icarus, 99, 98–105. 10.1016/0019-1035(92)90174-6.Google Scholar
Schofield, K. 1973. Evaluated Chemical Kinetic Rate Constants for Various Gas Phase Reactions. J. Phys. Chem. Ref. Data, 2, 25–84. 10.1063/1.3253112.Google Scholar
Seki, K., and Okabe, H. 1993. Photochemistry of Acetylene at 193.3 nm. J. Phys. Chem., 97, 5284–5290. 10.1021/j100122a018.Google Scholar
Sekine, Y., Imanaka, H., Matsui, T., Khare, B. N., et al. 2008a. The Role of Organic Haze in Titan's Atmospheric Chemistry I. Laboratory Investigation on Heterogeneous Reaction of Atomic Hydrogen with Titan Tholin. Icarus, 194, 186–200. 10.1016/j.icarus.2007.08.031.Google Scholar
Sekine, Y., Lebonnois, S., Imanaka, H., Matsui, T., et al. 2008b. The Role of Organic Haze in Titan's Atmospheric Chemistry II. Effect of Heterogeneous Reaction to the Hydrogen Budget and Chemical Composition of the Atmosphere. Icarus, 194, 201–211. 10.1016/j.icarus.2007.08.030.Google Scholar
Semaniak, J., Minaev, B. F., Derkatch, A. M., Hellberg, F., etal. 2001. Dissociative Recombination of HCNH+: Absolute Cross-Sections and Branching Ratios. Astrophys. J. Suppl. Ser., 135, 275–283. 10.1086/321797.Google Scholar
Shaw, D. A., Holland, D. M. P., MacDonald, M. A., Hopkirk, A., et al. 1992. A Study of the Absolute Photoabsorption Cross Section and the Photoionization Quantum Efficiency of Nitrogen from the Ionization Threshold to 485 A. Chem. Phys., 166, 379–391. 10.1016/0301-0104(92)80097-f.Google Scholar
Shirai, T., Tabata, T., Tawara, H., and Itikawa, Y. 2002. Analytic Cross Sections for Electron Collisions with Hydrocarbons. At. Data Nucl. Data Tables, 80, 147–204. 10.1006/adnd.2001.0878.Google Scholar
Sittler, E. C. Jr., Ali, A., Cooper, J. F., Hartle, R. E., et al. 2009. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and a Source of Titan's Aerosols?Planet. Space Sci., 57, 1547–1557. 10.1016/j.pss.2009.07.017.Google Scholar
Slagle, I. R., Gutman, D., Davies, J. W., and Pilling, M. J. 1988. Study of the Recombination Reaction CH3 + CH3 - C2H6. 1. Experiment. J. Phys. Chem., 92, 2455–2462. 10.1021/j100320a015.Google Scholar
Slanger, T. G., and Black, G. 1982. Photodissociative Channels at 1216 A for H2O, NH3, and CH4. J. Chem. Phys., 77, 2432–2437. 10.1063/1.444111.Google Scholar
Smith, D., Church, M. J., and Miller, T. M. 1978. Mutual Neutralization of Simple and Clustered Positive and Negative Ions. J. Chem. Phys., 68, 1224–1229. 10.1063/1.435842.Google Scholar
Smith, G. R., Strobel, D. F., Broadfoot, A. L., Sandel, B. R., et al. 1982. Titan's Upper Atmosphere: Composition and Temperature from the EUV Solar Occultation Results. J. Geophys. Res., 87, 1351–1359. 10.1029/JA087iA03p01351.Google Scholar
Smith, I. W. M., 2008. The Temperature-Dependence of Elementary Reaction Rates: Beyond Arrhenius. Chem. Soc. Rev., 37, 812–826. 10.1039/b704257b.Google Scholar
Smith, I. W. M., Sage, A. M., Donahue, N. M., Herbst, E., et al. 2006. The Temperature-Dependence of Rapid Low Temperature Reactions: Experiment, Understanding and Prediction. Faraday Discuss., 133, 137–156. 10.1039/b600721j.Google Scholar
Smith, N. S., and Raulin, F. 1999. Modeling of Methane Photolysis in the Reducing Atmospheres of the Outer Solar System. J. Geophys. Res., 104, 1873–1876. 10.1029/1998JE900027.Google Scholar
Sorkhabi, O., Blunt, V M., Lin, H., Xu, D., et al. 1997a. Photodissociation of C2H at 193 nm: Branching Ratios for the Formation of C2 in the X, A and B' States. J. Chem. Phys., 107, 9842–9851. 10.1063/1.475281.Google Scholar
Sorkhabi, O., Blunt, V M., Lin, H., A'Hearn, M. F., et al. 1997b. Using Photochemistry to Explain the Formation and Observation of C2 in Comets. Planet. Space Sci., 45, 721–730. 10.1016/S0032-0633(97)00077-9.Google Scholar
Stief, L. J., Nesbitt, F. L., Payne, W. A., et al. 1995. Rate Constant and Reaction Channels for the Reaction of Atomic Nitrogen with the Ethyl Radical. J. Chem. Phys., 102, 5309–5316. 10.1063/1.469257.Google Scholar
Straub, H. C., Lin, D., Lindsay, B. G., Smith, K. A., et al. 1997. Absolute Partial Cross Sections for Electron-Impact Ionization of CH4 from Threshold to 1000 eV. J. Chem. Phys., 106, 4430–4435. DOI:10.1063/1.473468.Google Scholar
Strobel, D. F. 1974. The Photochemistry of Hydrocarbons in the Atmosphere of Titan. Icarus, 21, 466–470. 10.1016/0019-1035(74)90149-3.Google Scholar
Strobel, D. F. 2010. Molecular Hydrogen in Titan's Atmosphere: Implications of the Measured Tropospheric and Thermospheric Mole Fractions. Icarus, 208, 878–886. 10.1016/j.icarus.2010.03.003.Google Scholar
Szopa, C., Cernogora, G., Boufendi, L., Correia, J. J., et al. 2006. PAMPRE: A Dusty Plasma Experiment for Titan's Tholins Production and Study. Planet. Space Sci., 54, 394–404. 10.1016/j.pss.2005.12.012.Google Scholar
Tahara, H., Minami, K., Murai, A., Yasui, T., et al. 1995. Diagnostic Experiment and Kinetic Model Analysis of Microwave CH4/H2 Plasmas for Deposition of Diamondlike Carbon Films. Jpn. J. Appl. Phys., 34, 1972–1979. 10.1143/JJAP.34.1972.Google Scholar
Talbi, D., Le Padellec, A., and Mitchell, J. B. A., 2000. Quantum Chemical Calculations for the Dissociative Recombination of HCN+ and HNC+. J Phys. B: At. Mol. Opt. Phys., 33, 3631–3646. 10.1088/0953-4075/33/18/311.Google Scholar
Teanby, N. A., Irwin, P. G. J., de Kok, R., Nixon, C. A., et al. 2008. Global and Temporal Variations in Hydrocarbons and Nitriles in Titan's Stratosphere for Northern Winter Observed by Cassini/CIRS. Icarus, 193, 595–611. 10.1016/j.icarus.2007.08.017.Google Scholar
Teanby, N. A., Irwin, P. G. J., de Kok, R., Jolly, A., et al. 2009. Titan's Stratospheric C2N2, C3H4, and C4H2 Abundances from Cassini/CIRS Far-Infrared Spectra. Icarus, 202, 620–631. 10.1016/j.icarus.2009.03.022.Google Scholar
Teanby, N. A., Irwin, P. G. J., de Kok, R., and Nixon, C. A. 2010. Mapping Titan's HCN in the Far Infra-Red: Implications for Photo-Chemistry. Faraday Discuss., 147, 51–64. 10.1039/c001690j.Google Scholar
Teslja, A., Nizamov, B., and Dagdigian, P. J. 2004. The Electronic Spectrum of Methyleneimine. J. Phys. Chem. A, 108, 4433–4439. 10.1021/jp037938+.Google Scholar
Thaddeus, P., Gottlieb, C. A., Gupta, H., Brünken, S., et al. 2008. Laboratory and Astronomical Detection of the Negative Molecular Ion C3N-. Astrophys. J., 677, 1132–1139. 10.1086/528947.Google Scholar
Thissen, R., Vuitton, V, Lavvas, P., Lemaire, J., et al. 2009. Laboratory Studies of Molecular Growth in the Titan Ionosphere. J. Phys. Chem. A, 113, 11211–11220. 10.1021/jp9050353.Google Scholar
Thissen, R., Witasse, O., Dutuit, O., Simon Wedlund, C., et al. 2011. Double Charged Ions in the Planetary Ionospheres: A Review. Phys. Chem. Chem. Phys., 13, 18264–18287. 10.1039/c1cp21957j.Google Scholar
Thomas, R. D. 2008. When Electrons Meet Molecular Ions and What Happens Next: Dissociative Recombination from Interstellar Molecular Clouds to Internal Combustion Engines. Mass Spec. Rev., 27, 485–530. 10.1002/mas.20169.Google Scholar
Tian, C., and Vidal, C. R. 1998. Electron Impact Ionization of N2 and O2: Contributions from Different Dissociation Channels of Multiply Ionized Molecules. J. Phys. B: At. Mol. Opt. Phys., 31, 5369–5381. 10.1088/0953-4075/31/24/018.Google Scholar
Tobie, G., Grasset, O., Lunine, J. I., Mocquet, A., et al. 2005. Titan's Internal Structure Inferred from a Coupled Thermal-Orbital Model. Icarus, 175, 496–502. 10.1016/j.icarus.2004.12.007.Google Scholar
Tomasko, M. G., Archinal, B., Becker, T., Bézard, B., et al. 2005. Rain, Winds and Haze during the Huygens Probe's Descent to Titan's Surface. Nature, 438, 765–778. 10.1038/nature04126.Google Scholar
Tomasko, M. G., Doose, L., Engel, S., Dafoe, L. E., et al. 2008. A Model of Titan's Aerosols Based on Measurements Made Inside the Atmosphere. Planet. Space Sci., 56, 669–707. 10.1016/j.pss.2007.11.019.Google Scholar
Toublanc, D., Parisot, J. P., Brillet, J., Gautier, D., et al. 1995. Photochemical Modeling of Titan's Atmosphere. Icarus, 113, 2–26. 10.1006/icar.1995.1002.Google Scholar
Troe, J. 1977. Theory of Thermal Unimolecular Reactions at Low Pressures. I. Solutions of the Master Equation. J. Chem. Phys., 66, 4745. 10.1063/1.433837.Google Scholar
Vervack, R. J. Jr., Sandel, B. R., and Strobel, D. F. 2004. New Perspectives on Titan's Upper Atmosphere from a Reanalysis of the Voyager 1 UVS Solar Occultations. Icarus, 170, 91–112. 10.1016/j.icarus.2004.03.005.Google Scholar
Vigren, E., Hamberg, M., Zhaunerchyk, V, Kaminska, M., et al. 2009. The Dissociative Recombination of Protonated Acrylonitrile, CH2CHCNH+, with Implications for the Nitrile Chemistry in Dark Molecular Clouds and the Upper Atmosphere of Titan. Astrophys. J., 695, 317–324. 10.1088/0004-637X/695/1/317.Google Scholar
Vigren, E., Semaniak, J., Hamberg, M., Zhaunerchyk, V., et al. 2012. Dissociative Recombination of Nitrile Ions with Implications for Titan's Upper Atmosphere. Planet. Space Sci., 60, 102–106. 10.1016/j.pss.2011.03.001.Google Scholar
Vinatier, S., Bézard, B., Fouchet, T., Teanby, N. A., et al. 2007. Vertical Abundance Profiles of Hydrocarbons in Titan's Atmosphere at 15°S and 80°N Retrieved from Cassini/CIRS Spectra. Icarus, 188, 120–138. 10.1016/j.icarus.2006.10.031.Google Scholar
Vinatier, S., Bézard, B., Nixon, C. A., Mamoutkine, A., et al. 2010. Analysis of Cassini/CIRS Lim Spectra of Titan Acquired During the Nominal Mission I. Hydrocarbons, Nitriles and CO2 Vertical Mixing Ratio Profiles. Icarus, 205, 559–570. 10.1016/j.icarus.2009.08.013.Google Scholar
Vuitton, V, Doussin, J.-F., Bénilan, Y., Raulin, F., et al. 2006a. Experimental and Theoretical Study of Hydrocarbon Photochemistry Applied to Titan Stratosphere. Icarus, 185, 287–300. 10.1016/j.icarus.2006.06.002.Google Scholar
Vuitton, V, Yelle, R. V, and Anicich, V G. 2006b. The Nitrogen Chemistry of Titan's Upper Atmosphere Revealed. Astrophys. J., 647, L175–L178. 10.1086/507467.Google Scholar
Vuitton, V, Yelle, R. V, and McEwan, M. J. 2007. Ion Chemistry and N-Containing Molecules in Titan's Upper Atmosphere. Icarus, 191, 722–742. 10.1016/j.icarus.2007.06.023.Google Scholar
Vuitton, V, Yelle, R. V, and Cui, J. 2008. Formation and Distribution of Benzene on Titan. J. Geophys. Res., 113, E05007. 10.1029/2007JE002997.Google Scholar
Vuitton, V, Lavvas, P., Yelle, R. V, Galand, M., et al. 2009. Negative Ion Chemistry in Titan's Upper Atmosphere. Planet. Space Sci., 57, 1558–1572. 10.1016/j.pss.2009.04.004.Google Scholar
Vuitton, V., Bonnet, J.-Y., Frisari, M., Thissen, R., et al. 2010. Very High Resolution Mass Spectrometry of HCN Polymers and Tholins. Faraday Discuss., 147, 495–508. 10.1039/C003758C.Google Scholar
Vuitton, V, Yelle, R. V, Lavvas, P., and Klippenstein, S. J. 2012. Rapid Association Reactions at Low Pressure: Impact on the Formation of Hydrocarbons on Titan. Astrophys. J., 744, 11–17. 10.1088/0004-637X/744/1/11.Google Scholar
Wahlund, J.-E., Bostrom, R., Gustafsson, G., Gurnett, D. A., et al. 2005. Cassini Measurements of Cold Plasma in the Ionosphere of Titan. Science, 308, 986–989. 10.1126/science.1109807.Google Scholar
Wahlund, J.-E., Galand, M., Müller-Wodarg, I., Cui, J., et al. 2009. On the Amount of Heavy Molecular Ions in Titan's Ionosphere. Planet. Space Sci., 57, 1857–1865. 10.1016/j.pss.2009.07.014.Google Scholar
Waite, J. H. Jr., Young, D. T., Cravens, T. E., Coates, A. J., etal. 2007. The Process of Tholin Formation in Titan's Upper Atmosphere. Science, 316, 870–875. 10.1126/science.1139727.Google Scholar
Wakelam, V., Smith, I. W. M., Herbst, E., Troe, J., et al. 2010. Reaction Networks for Interstellar Chemical Modelling: Improvements and Challenges. Space Sci. Rev., 156, 13–72. 10.1007/s11214-010-9712-5.Google Scholar
Walter, C. W., Cosby, P. C., and Helm, H. 1993. N(4S0), N(2D0), and N(2P0) Yields in Predissociation of Excited Singlet-States of N2. J. Chem. Phys., 99, 3553–3561. 10.1063/1.466152.Google Scholar
Wang, B., Hou, H., Yoder, L. M., Muckerman, J. T., etal. 2003. Experimental and Theoretical Investigations on the Methyl-Methyl Recombination Reaction. J. Phys. Chem. A, 107, 11414–11426. 10.1021/jp030657h.Google Scholar
Wang, H., and Frenklach, M. 1994. Calculations of Rate Coefficients for the Chemically Activated Reactions of Acetylene with Vinylic and Aromatic Radicals. J. Phys. Chem., 98, 11465–11489. 10.1021/j100095a033.Google Scholar
Wang, J. H., and Liu, K. 1998. VUV Photochemistry of CH4 and Isotopomers. I. Dynamics and Dissociation Pathway of the H/D-Atom Elimination Channel. J. Chem. Phys., 109, 7105–7112. 10.1063/1.477394.Google Scholar
Wang, J. H., Liu, K. P., Min, Z. Y., Su, H. M., et al. 2000. Vacuum Ultraviolet Photochemistry of CH4 and Isotopomers. II. Product Channel Fields and Absorption Spectra. J. Chem. Phys., 113, 4146–4152. 10.1063/1.1288145.Google Scholar
Wehlitz, R. 2010. Simultaneous Emission of Multiple Electrons from Atoms and Molecules Using Synchrotron Radiation. Adv. Atom. Mol. Opt. Phys., 58, 1–76. 10.1016/s1049-250x(10)05806-4.Google Scholar
West, R. A., and Smith, P. H. 1991. Evidence for Aggregate Particles in the Atmospheres of Titan and Jupiter. Icarus, 90, 330–333. 10.1016/0019-1035(91)90113-8.Google Scholar
Wiese, W. L., and Fuhr, J. R. 2007. Improved Critical Compilations of Selected Atomic Transition Probabilities for Neutral and Singly Ionized Carbon and Nitrogen. J. Phys. Chem. Ref. Data, 36, 1287–1345. 10.1063/1.2740642.Google Scholar
Wilson, E. H., and Atreya, S. K. 2000. Sensitivity Studies of Methane Photolysis and its Impact on Hydrocarbon Chemistry in the Atmosphere of Titan. J. Geophys. Res., 105, 20263–20273. 10.1029/1999JE001221.Google Scholar
Wilson, E. H., and Atreya, S. K. 2003. Chemical Sources of Haze Formation in Titan's Atmosphere. Planet. Space Sci., 51, 1017–1033. 10.1016/j.pss.2003.06.003.Google Scholar
Wilson, E. H., and Atreya, S. K. 2004. Current State of Modeling the Photochemistry of Titan's Mutually Dependent Atmosphere and Ionosphere. J. Geophys. Res., 109, E06002. 10.1029/2003JE002181.Google Scholar
Wilson, E. H., Atreya, S. K., and Coustenis, A. 2003. Mechanisms for the Formation of Benzene in the Atmosphere of Titan. J. Geophys. Res., 108, 5014. 10.1029/2002JE001896.Google Scholar
Wong, A. S., Morgan, C. G., Yung, Y. L., and Owen, T. 2002. Evolution of CO on Titan. Icarus, 155, 382–392. 10.1006/icar.2001.6720.Google Scholar
Wuerker, R. F., Schmitz, L., Fukuchi, T., and Straus, P. 1988. Lifetime Measurements of the Excited States of N2 and N2+ by Laser Induced Fluorescence. Chem. Phys. Lett., 150, 443–446. 10.1016/0009-2614(88)80434-2.Google Scholar
Yang, Z., Snow, T. P., and Bierbaum, V M. 2010a. Computational Studies of Gas Phase Reactions of Carbon Chain Anions with N and O Atoms. Phys. Chem. Chem. Phys., 12, 13091. 10.1039/c0cp00537a.Google Scholar
Yang, Z., Eichelberger, B., Carpenter, M. Y., Martinez, O. Jr., et al. 2010b. Experimental and Theoretical Studies of Reactions between H Atoms and Carbanions of Interstellar Relevance. Astrophys. J., 723, 1325–1330. 10.1088/0004-637X/723/2/1325.Google Scholar
Yang, Z., Cole, C. A., Martinez, O. Jr., Carpenter, M. Y., et al. 2011. Experimental and Theoretical Studies of Reactions between H Atoms and Nitrogen-Containing Carbanions. Astrophys. J., 739, 19. 10.1088/0004-637X/739/1/19.Google Scholar
Yelle, R. V, Cui, J., and Müller-Wodarg, I. C. F., 2008. Methane Escape from Titan's Atmosphere. J. Geophys. Res., 113, E10003. 10.1029/2007JE003031.Google Scholar
Yelle, R. V, Vuitton, V, Lavvas, P., Klippenstein, S. J., et al. 2010. Formation of NH3 and CH2NH in Titan's Upper Atmosphere. Faraday Discuss., 147, 31–49. 10.1039/c004787m.Google Scholar
Yung, Y. L. 1987. An Update of Nitrile Photochemistry on Titan. Icarus, 72, 468–472. 10.1016/0019-1035(87)90186-2.Google Scholar
Yung, Y. L., and DeMore, W. B. 1999. Photochemistry of Planetary Atmospheres. Oxford: Oxford University Press.
Yung, Y. L., Allen, M., and Pinto, J. P. 1984. Photochemistry of the Atmosphere of Titan: Comparison Between Model and Observations. Astrophys. J. Suppl. Ser., 55, 465–506. 10.1086/190963.Google Scholar
Zabka, J., Romanzin, C., Alcaraz, C., and Polašek, M. 2012. Anion Chemistry on Titan: A Possible Route to Large N-Bearing Hydrocarbons. Icarus, 219, 161–167. 10.1016/j.icarus.2012.02.031.Google Scholar
Zhang, F., Kim, Y. S., Kaiser, R. I., Krishtal, S. P., et al. 2009. Crossed Molecular Beams Study on the Formation of Vinylacetylene in Titan's Atmosphere. J. Phys. Chem. A, 113, 11167–11173. 10.1021/jp9032595.Google Scholar
Zhang, F., Maksyutenko, P., and R. I., Kaiser. 2012. Chemical Dynamics of the CH(X2P) + C2H4(X1A1g), CH(X2P) + C2D4(X1 A1g), and CD(X2P) + C2H4(X1 A1g) Reactions Studied under Single Collision Conditions. Phys. Chem. Chem. Phys., 14, 529–537. 10.1039/c1cp22350j.Google Scholar
Zins, E.-L., and Schröder, D. 2010. Carbon-Carbon Coupling Reactions of Medium-Sized Nitrogen-Containing Dications. J. Phys. Chem. A, 114, 5989–5996. 10.1021/jp100852q.Google Scholar
Zipf, E. C., Espy, P. J., and Boyle, C. F. 1980. The Excitation and Collisional Deactivation of Metastable N(2P) Atoms in Auroras. J. Geophys. Res., 85, 687–694. 10.1029/JA085iA02p00687.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×