The earlier chapter of this self-contained text provide a route from first principles through standard linear and quadratic algebra to geometric algebra, with Clifford's geometric algebras taking pride of place. In parallel with this is an account, also from first principles, of the elementary theory of topological spaces and of continuous and differentiable maps that leads up to the definitions of smooth manifolds and their tangent spaces and of Lie groups and Lie algebras. The calculus is presented as far as possible in basis free form to emphasize its geometrical flavour and its linear algebra content. In this second edition Dr Porteous has taken the opportunity to add a chapter on triality which extends earlier work on the Spin groups in the chapter on Clifford algebras. The details include a number of important transitive group actions and a description of one of the exceptional Lie groups, the group G2. A number of corrections and improvements have also been made. There are many exercises throughout the book and senior undergraduates in mathematics as well as first-year graduate students will continue to find it stimulating and rewarding.
Review of the hardback:‘… a remarkable book, which is likely to remain very useful, both for teaching and research, during many years to come.’
Source: J.Dieudonné in Zentralblatt Für Mathematik
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.