Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T21:08:51.066Z Has data issue: false hasContentIssue false

Chapter 25 - Progeria

from Section 3 - Hereditary and Genetic Conditions and Malformations

Published online by Cambridge University Press:  15 June 2018

Louis Caplan
Affiliation:
Beth Israel-Deaconess Medical Center, Boston
José Biller
Affiliation:
Loyola University Stritch School of Medicine, Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akawi, N., Ali, B., & Al, G. L., 2013. A progeroid syndrome with neonatal presentation and long survival maps to 19p13.3p13.2. Birth Defects Res A Clin Mol Teratol 97, 456–62.Google Scholar
Atkins, L., 1954. Progeria: Report of a case with post-mortem findings. N Engl J Med 250, 1065–9.CrossRefGoogle ScholarPubMed
Cao, H. & Hegele, R. A., 2003. LMNA is mutated in Hutchinson-Gilford progeria (MIM 176670) but not in Wiedemann–Rautenstrauch progeroid syndrome (MIM 264090). J Hum Genet 48, 271–4.Google Scholar
Chen, L., Lee, L., Kudlow, B. A., et al., 2003. LMNA mutations in atypical Werner’s syndrome. Lancet 362, 440–5.Google Scholar
Csoka, A. B., Cao, H., Sammak, P. J., et al., 2004a. Novel lamin A/C gene (LMNA) mutations in atypical progeroid syndromes. J Med Genet 41, 304–8.Google Scholar
Csoka, A. B., English, S. B., Simkevich, C. P., et al., 2004b. Genome-scale expression profiling of Hutchinson–Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis. Aging Cell 3, 235–43.CrossRefGoogle ScholarPubMed
D’Apice, M. R., Tenconi, R., Mammi, I., van den Ende, J., & Novelli, G., 2004. Paternal origin of LMNA mutations in Hutchinson–Gilford progeria. Clin Genet 65, 52–4.Google ScholarPubMed
De Sandre-Giovannoli, A., Bernard, R., Cau, P., et al., 2003. Lamin A truncation in Hutchinson–Gilford progeria. Science 300, 2055.Google Scholar
DeBusk, F. L., 1972. The Hutchinson–Gilford progeria syndrome. Report of 4 cases and review of the literature. J Pediatr 80, 697724.CrossRefGoogle ScholarPubMed
Delgado Luengo, W., Rojas, M. A., Ortiz, L. R., et al., 2002. Del(1)(q23) in a patient with Hutchinson–Gilford progeria. Am J Med Genet 113, 298301.Google Scholar
Dyck, J. D., David, T. E., Burke, B., et al., 1987. Management of coronary artery disease in Hutchinson–Gilford syndrome. J Pediatr 111, 407–10.Google Scholar
Epstein, C. J., Martin, G. M., Schultz, A. L., & Motulsky, A. G., 1966. Werner syndrome. A review of its symptomatology, pathologic features, genetics and relationship to the natural aging process. Medicine 45, 177221.Google Scholar
Eriksson, M., Brown, W. T., Gordon, L. B., et al., 2003. Recurrent de novo point mutations in human lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–8.Google Scholar
Fong, L. G., Frost, D., Meta, M., et al., 2006. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311, 1621–3.Google Scholar
Fukuchi, K., Katsuya, T., Sugimoto, K., et al., 2004. LMNA mutation in a 45-year-old Japanese subject with Hutchinson–Gilford progeria syndrome. J Med Genet 41, e67.Google Scholar
Gee, J., Ding, Q., & Keller, J. N., 2002. Analysis of Werner’s expression within the brain and primary neuronal culture. Brain Res 940, 44–8.Google Scholar
Gilford, H., 1904. Progeria: A form of senilism. Practitioner 73, 188217.Google Scholar
Goddard, K. A. B., Yu, C.-E., Oshima, J., Miki, T., et al., 1996. Toward localization of the Werner syndrome gene by linkage disequilibrium and ancestral haplotyping: Lessons learned from analysis of 35 chromosome 8p11.1–21.1 markers. Am J Hum Genet 58, 1286–302.Google Scholar
Goldman, R. D., Shumaker, D. K., Erdos, M. R., et al., 2004. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA 101, 8963–8.Google Scholar
Gordon, L. B., Brown, W. T., & Collins, F. S., 1993. Hutchinson–Gilford progeria syndrome. GeneReviews. Initial posting: December 12, 2003; last update: January 8, 2015. Available from https://www.ncbi.nlm.nih.gov/books/NBK1121/.Google Scholar
Gordon, L. B., Kleinman, M. E., Miller, D. T., et al., 2012. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA 109, 16666–71.Google Scholar
Gordon, L. B., Massaro, J., D’Agostino, R. B., Sr., et al., 2014. Impact of farnesylation inhibitors on survival in Hutchinson–Gilford progeria syndrome. Circulation 130, 2734.Google Scholar
Goto, M., 1997. Hierarchical deterioration of body systems in Werner’s syndrome: Implications for normal ageing. Mech Ageing Dev 98, 239–54.Google Scholar
Gray, M. D., Shen, J.-C., Kamath-Loeb, A. S., et al., 1997. The Werner syndrome protein is a DNA helicase. Nature Genet 17, 100–3.Google Scholar
Green, L. N., 1981. Progeria with carotid artery aneurysms: Report of a case. Arch Neurol 38, 659–61.Google Scholar
Hennekam, R. C., 2006. Hutchinson–Gilford progeria syndrome: Review of the phenotype. Am J Med Genet A 140, 2603–24.Google ScholarPubMed
Hofer, A. C., Tran, R. T., Aziz, O. Z., et al., 2005. Shared phenotypes among segmental progeroid syndromes suggest underlying pathways of aging. J Gerontol A Biol Sci Med Sci 60, 1020.CrossRefGoogle ScholarPubMed
Huang, S., Baomin, L., Gray, M. D., et al., 1998. The premature ageing syndrome protein, WRN, is a 3’ -> 5’ exonuclease. Nature Genet 20, 114–16.Google Scholar
Hutchinson, J., 1896. Congenital absence of hair and mammary glands with an atrophic condition of the skin and its appendages in a boy whose mother had been almost wholly bald from alopecia areata from the age of 6. Trans Med Chirurg Soc Edin 69, 473–7.Google Scholar
Ichikawa, K., Yamabe, Y., Imamura, O., et al., 1997. Cloning and characterization of a novel gene, WS-3, in human chromosome 8p11-p12. Gene 189, 277–87.Google Scholar
Kane, M. S., Lindsay, M. E., Judge, D. P., et al., 2013. LMNA-associated cardiocutaneous progeria: An inherited autosomal dominant premature aging syndrome with late onset. Am J Med Genet A 161, 1599–611.Google Scholar
Luo, D. Q., Wang, X. Z., Meng, Y., et al., 2014. Mandibuloacral dysplasia type A-associated progeria caused by homozygous LMNA mutation in a family from southern China. BMC Pediatr 14, 256.Google Scholar
Mahar, L. J., Lie, J. T., Groover, R. V., et al., 1979. Primary cardiac myxosarcoma in a child. Mayo Clinic Proc 54, 261–6.Google Scholar
Miller, V. S. & Roach, E. S. 2000. Neurocutaneous syndromes. In Bradley, W. G. & Daroff, R. B., eds. Neurology in Clinical Practice, 3rd edn. Boston: Butterworth-Heinemann, pp. 1666–700.Google Scholar
Moorthy, N. S., Sousa, S. F., Ramos, M. J., & Fernandes, P. A., 2013. Farnesyltransferase inhibitors: A comprehensive review based on quantitative structural analysis. Curr Med Chem 20, 4888–923.Google Scholar
Naganuma, Y., Konishi, T., Hongou, K., et al., 1990. A case of progeria syndrome with cerebral infarction. Brain Dev 22, 71–6.Google ScholarPubMed
Narazaki, R., Makimura, M., Sanefuji, M., et al., 2013. Bilateral stenosis of carotid siphon in Hutchinson–Gilford progeria syndrome. Brain Dev 35, 690–3.Google Scholar
Navarro, C. L., Cau, P., & Levy, N., 2006. Molecular bases of progeroid syndromes. Hum Mol Genet 15, R151–R61.Google Scholar
Novelli, G., Muchir, A., Sangiuolo, F., et al., 2002. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am J Hum Genet 71, 426–31.Google Scholar
Ogihara, T., Hata, T., Tanaka, K., et al., 1986. Hutchinson–Gilford progeria syndrome in a 45-year-old man. Am J Med 81, 135–8.Google Scholar
Pallotta, R. & Morgese, G., 1984. Mandibuloacral dysplasia: A rare progerioid syndrome. Two brothers confirm autosomal recessive inheritance. Clin Genet 26, 133–8.Google Scholar
Perloff, J. K. & Phelps, E. T., 1958. A review of Werner’s syndrome with a report of the second autopsied case. Ann Int Med 48, 1205–20.Google Scholar
Plasilova, M., Chattopadhyay, C., Pal, P., et al., 2004. Homozygous missense mutation in the lamin A/C gene causes autosomal recessive Hutchinson–Gilford progeria syndrome. J Med Genet 41, 609–14.Google Scholar
Reunert, J., Wentzell, R., Walter, M., Jakubiczka, S., 2012. Neonatal progeria: Increased ratio of progerin to lamin A leads to progeria of the newborn. Eur J Hum Genet 20, 933–7.Google Scholar
Rork, J. F., Huang, J. T., Gordon, L. B., et al., 2014. Initial cutaneous manifestations of Hutchinson–Gilford progeria syndrome. Pediatr Dermatol 31, 196202.Google Scholar
Rosman, N. P., Anselm, I., & Bhadelia, R. A., 2001. Progressive intracranial vascular disease with strokes and seizures in a boy with progeria. J Child Neurol 16, 212–15.Google Scholar
Sarkar, P. K. & Shinton, R. A., 2001. Hutchinson–Gilford progeria syndrome. Postgrad Med J 77, 312–17.Google Scholar
Silvera, V. M., Gordon, L. B., Orbach, D. B., et al., 2013. Imaging characteristics of cerebrovascular arteriopathy and stroke in Hutchinson–Gilford progeria syndrome. Am J Neuroradiol 34, 1091–7.Google Scholar
Smith, A. S., Wiznitzer, M., Karaman, B. A., Horwitz, S. J., & Lanzieri, C. F., 1993. MRA detection of vascular occlusion in a child with progeria. Am J Neuroradiol 14, 441–3.Google Scholar
Sowmiya, R., Prabhavathy, D., & Jayakumar, S., 2011. Progeria in siblings: A rare case report. Indian J Dermatol 56, 581–2.Google Scholar
Tokunaga, M., Mori, S., Sato, K., Nakamura, K., & Wakamatsu, E., 1976. Postmortem study of a case of Werner’s syndrome. J Am Geriatr Soc 24, 407–11.Google Scholar
Ullrich, N. J. & Gordon, L. B., 2015. Hutchinson–Gilford progeria syndrome. Handb Clin Neurol 132, 249–64.Google Scholar
Ullrich, N. J., Kieran, M. W., Miller, D. T., et al., 2013. Neurologic features of Hutchinson–Gilford progeria syndrome after lonafarnib treatment. Neurology 81, 427–30.CrossRefGoogle ScholarPubMed
Wagle, W. A., Haller, J. S., & Cousins, J. P., 1992. Cerebral infarction in progeria. Pediatr Neurol 8, 476–7.CrossRefGoogle ScholarPubMed
Werner, C. W. 1904. Uber Kataraki in Verbindung mit Sklerodermis. Kiel: Schmidt and Klaunig.Google Scholar
Wuyts, W., Biervliet, M., Reyniers, E., et al., 2005. Somatic and gonadal mosaicism in Hutchinson–Gilford progeria. Am J Med Genet A 135, 66–8.Google Scholar
Yang, S. H., Meta, M., Qiao, X., et al., 2006. A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson–Gilford progeria syndrome mutation. J Clin Invest 116, 2115–21.Google Scholar
Young, S. G., Jung, H. J., Lee, J. M., & Fong, L. G., 2014. Nuclear lamins and neurobiology. Mol Cell Biol 34, 2776–85.Google Scholar
Zina, A. M., Cravaior, A., & Bundino, S., 1981. Familial mandibuloacral dysplasia. Br J Dermatol 105, 719–23.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×