To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Model checking is one of the most successful verification techniques and has been widely adopted in traditional computing and communication hardware and software industries. This book provides the first systematic introduction to model checking techniques applicable to quantum systems, with broad potential applications in the emerging industry of quantum computing and quantum communication as well as quantum physics. Suitable for use as a course textbook and for self-study, graduate and senior undergraduate students will appreciate the step-by-step explanations and the exercises included. Researchers and engineers in the related fields can further develop these techniques in their own work, with the final chapter outlining potential future applications.
Ranked set sampling (RSS) and some of its variants are sampling designs that are applied widely in different areas. When the underlying population contains different subpopulations, we can use stratified ranked set sampling (SRSS) which combines the advantages of stratification with RSS. In the present paper, we consider the information content of SRSS in terms of extropy measure. Some results using stochastic orders properties are obtained. The effect of imperfect ranking on discrimination information is analytically investigated. It is proved that discrimination information between the perfect SRSS and simple random sampling (SRS) data sets performs better than that of between the imperfect SRSS and SRS data sets.