To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Understanding the mechanical properties of materials is crucial for their reliable application as bulk materials as well as in a miniaturized form. The deformation of materials is usually non-uniform and, hence, needs to be characterized on a local level. The following article focuses on the in-Situ determination of mechanical stresses in crystalline materials during deformation. This can be achieved by both diffraction as well as spectroscopical methods, where the elastic strain is the parameter measured, which is subsequently converted into stresses by the application of Hooke's law. As in Situ measurements require rapid data acquisition in conjunction with reasonable penetration depths, we will focus on x-rays. However, the different techniques described can be applied to any other diffraction probe as well. The description of diffraction techniques, which span the range from averaging techniques to 2D and 3D strain mapping, is complemented by a section on Raman spectroscopy as an alternative method for stress determination for non-metallic materials. Local stresses also can be correlated to local defect densities.
Scanning probe microscopy (SPM) has undergone rapid advancements since its invention almost three decades ago. Applications have been extended from topographical imaging to the measurement of magnetic fields, frictional forces, electric potentials, capacitance, current flow, piezoelectric response and temperature (to name a few) of inorganic and organic materials, as well as biological entities. Here, we limit our focus to mechanical characterization by taking advantage of the unique imaging and force/displacement sensing capabilities of SPM. This article presents state-of-the-art in situ SPM nanomechanical testing methods spanning (1) probing the mechanical properties of individual one-dimensional nanostructures; (2) mapping local, nanoscale strain fields, fracture, and wear damage of nanostructured heterogeneous materials; and (3) measuring the interfacial strength of nanostructures. The article highlights several novel SPM nanomechanical testing methods, which are expected to lead to further advancements in nanoscale mechanical testing and instrumentation toward the exploration and fundamental understanding of mechanical property size effects in nanomaterials.
As-deposited ZnO/diamondlike carbon (DLC) was prepared using the laser ablation technique on ZnO/C targets, and in situ oxidized ZnO/DLC was prepared by using the same technique, but with the presence of oxygen on Zn/C targets. Transmission electron microscopy showed that ZnO/DLC films were obtainable by using both methods, but only in situ oxidized ZnO/DLC films showed the ultraviolet absorption at ˜370 nm. In situ oxidized films are highly sp3-bonded and rougher than as-deposited films, but as-deposited films are mechanically harder, stiffer, and have higher adhesion strength than in situ oxidized films. X-ray photoelectron spectroscopy revealed that a lower fraction of SiC, but a higher fraction of sp3 bonding was formed in the in situ oxidized ZnO/DLC. This hinted that the presence of oxygen might have scattered the plume’s expansion and reduced the energy possessed by the ions, thus reducing the graphitization and the formation of SiC in DLC matrix. Hence, by altering the deposition mechanism during laser ablation, ZnO/DLC films with modified material properties can be tailored.
Ion implantation has been widely used to improve the mechanical and tribological properties of single crystalline silicon, an essential material for the semiconductor industry. In this study, the effects of four different ion implantations, Ar, C, N, and Ne ions, on the mechanical and tribological properties of single crystal Si were investigated at both the nanoscale and the microscale. Nanoindentation and microindentation were used to measure the mechanical properties and fracture toughness of ion-implanted Si. Nano and micro scratch and wear tests were performed to study the tribological behaviors of different ion-implanted Si. The relationship between the mechanical properties and tribological behavior and the damage mechanism of scratch and wear were also discussed.
Interfacial reactions in Bi/Ni, Sn/Co, and Sn/Te systems that exhibit unique cruciform pattern formation are investigated. Different from the couples examined in the past, the solid substrates, Ni, Co, and Te, are placed outside the couples while constituents of low melting temperature, Bi and Sn, are placed in the center. With interfacial reactions proceeding in these couples, the reaction products grow inwardly at reentrant corners, and shrinking of the reaction layer at the corner is observed. As a result of the volumetric changes caused by interfacial reactions, stresses are built up in the couples, and stress-intensified locations are found at reentrant corners. The built-up stresses alter the diffusion rates and thus retard the reaction at the corners. Instead of forming cruciform patterns, the inner reactant is of flat shuriken shape after reactions.
The effect of the presence of diamondlike carbon coatings deposited on (100) Si substrates on the deformation mechanisms operating in the silicon substrate during contact loading have been investigated by both cross-sectional transmission electron microscopy and modeling of the stresses generated beneath the indenter tip. The observed subsurface microstructures were correlated to the Tresca shear stress and the hydrostatic stress generated in the silicon substrate beneath the indenter tip. The presence of the coating altered the stresses generated in the substrate, and changed the deformation mechanism from one of principally phase transformation in uncoated Si to predominantly dislocation motion in the silicon substrate for the diamondlike C–Si system. The magnitude and distribution of the shear and hydrostatic stresses in the substrate were found to depend on both the indentation load and the thickness of the coating. Furthermore, the observed width of deformation, parallel to the interface, which was found to increase with coating thickness, was correlated to the wider distribution of the Tresca shear stress in the substrate brought about by the presence of the coating.
Egyptian pigments include the most successful synthetic blue pigment made, which has been in use for more than 2500 years. The nature of some Egyptian pigments, such as malachite, azurite, green earth, and calcite are briefly reviewed. The principal artworks examined here are a group of several 26th Dynasty coffins in the collection of the San Diego Museum of Man. This article examines the nature of the wooden substrate, binder, pigments, and alteration products. The conservation needs of the collection are of special importance. The pigments used in the coffins are malachite, orpiment, carbon black, calcite, and red ocher. Gum Arabic was used as a binder. Wood anatomical studies identified fig as the wood. This article also covers the degradation product, oxammite, resulting from the microbiological decay of textile threads on a Hawk Mummy.
The preparation of high-quality ferroelectric PbTiO3-based ultrathin films by chemical solution deposition, using a diol-based sol-gel method, has proved to be successful. However, there is a critical thickness below which the films break up into isolated structures. According to previous studies, above a certain grain size to thickness ratio a microstructural instability occurs and the coatings are no longer continuous. We explore the use of the solvent chemistry to control this phenomenon, as an alternative to the more conventional variation of the crystallization parameters. The use of diols with short C chain lengths leads to films with smaller grain sizes, whose critical thicknesses are lower. A reduction from 40 to 15 nm is achieved by reducing the number of C of the diol used from 5 to 2. A critical value of G/t < 5.0 is necessary to obtain continuous ultrathin films with the processing conditions used.
Inks containing silver nanoparticles of 12 nm, 80 nm, and a 15%/85% mixture of the two sizes were used to evaluate the effect of particle size and size distribution on the electrical properties of sintered films. The silver layers deposited with a “drop-on-demand” inkjet printer were heated at temperatures ranging from 125 to 200 °C. The small particles formed less resistive films at 125 °C, while the larger ones provided better electrical conductivity above 150 °C. The inks containing mixed small and large particles yielded the most conductive silver films over the entire investigated temperature range. A mechanism explaining these results is proposed based on the evolution of film microstructure with temperature.
This study examined the performance of poly(3-hexylthiophene-2,5-diyl)(P3HT)- and [6,6]-phenyl C61 butyric acid methyl ester (PCBM)-based organic solar cells (OSCs) with a pyromellitic dianhydride (PMDA) cathode interfacial layer between the active layer and cathode. The effect of inserting the cathode interfacial layer with different thicknesses was investigated. For the OSC samples with a 0.5 nm thick PMDA layer, the power conversion efficiency (PCE) was approximately 2.77% under 100 mW/cm2 (AM1.5) simulated illumination. It was suggested that the PMDA cathode interfacial layer acts as an exciton blocking layer, leading to an enhancement of the OSC performance.
We synthesized Ta3N5 by ammonolysis of Ta(OH)5. Ta(OH)5 was prepared by titration using TaCl5. The stirring speed and the amount of NH4OH to be added were important factors for controlling the particle size and formation of Ta(OH)5 during titration. During transformation of Ta(OH)5 to Ta3N5, the color changed from white to red. A small particle size and high level of formation of Ta(OH)5 improved nitridation, which was related to the color value. An x-ray diffractometer was used for phase identification. A scanning electron microscope was used to determine the microstructure, particle shape, and size. A colorimeter was used to obtain CIELab values. Ultraviolet–visible (UV–VIS) spectroscopy was carried out to determine the absorbance of colored powders. Thermogravimetry and a differential scanning calorimeter were used in air with a heating rate of 5 °C/min for thermal stability and behavior. An ON detector was used for detecting oxygen and nitrogen contents in Ta3N5.
In situ investigation of the interfacial reaction in the Sn/Cu thin film during aging, and reflow was carried out by synchrotron radiation with high intensity and high resolution of x-ray. With this technique, the phase transformation and evolution of the Sn/Cu thin film during heat treatment can be directly and continuously investigated. Moreover, the information for coefficient of thermal expansion in intermetallic compounds was also evaluated by this approach.
Interatomic potentials are constructed for eight representative binary metal systems covering various structural combinations and thermodynamic characteristics. On the basis of the constructed interatomic potentials, molecular dynamics simulations reveal that the physical origin of metallic glass formation is the crystalline lattice collapsing while solute atoms are exceeding the critical value, thus determining two critical solid solubilities for the system. For a binary metal system, the composition range bounded by the two determined critical solid solubilities is therefore defined as its intrinsic glass-forming range, or quantitative glass-forming ability.
The synthesis of monodisperse magnetite nanoparticles (Fe3O4 NPs) has been widely investigated over the last decade. Among the various synthetic methods, thermal decomposition of iron acetylacetonate, Fe(acac)3, or the premade iron-surfactant complex, was demonstrated to be promising to obtain monodisperse Fe3O4 NPs with controllable size and morphology. However, toxic and expensive precursors or tedious experimental procedures are normally required in these approaches. In this communication, we report a facile chemical top-down method to synthesize monodisperse magnetite NPs by using rust, which is mainly composed of γ-Fe2O3, as the iron source and oleic acid as the capping agent. The particle size, and hence the magnetization, of NPs can be readily controlled by adjusting the rust/oleic acid ratio and reaction temperature. This process is a green chemical approach and is easy to be reproduced and scaled up, which could be developed as an effective way to convert waste materials into high quality nanocrystals.