To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
During the first half of the nineteenth century the Stirling brothers and John Ericsson made significant attempts to design hot air engines which could provide an economical alternative to high-pressure steam. They believed that it would be possible to gain fuel efficiencies superior to those obtained with steam by employing a heat exchanger within the air engine cycle, erroneously supposing that such a heat exchanger could eliminate the large loss of heat incurred in the condenser of the steam engine. The Stirling brothers called their heat exchanger an economizer because it prevented the waste of heat, but Ericsson coined the term regenerator because he imagined that the power of the heat (caloric) could actually be regenerated, i.e. re-used in the engine to generate mechanical work. Ericsson's term became commonly accepted, so that Stirling's economizer is now also referred to as a generator. These attempts to attain high horsepower outputs with hot air engines were abandoned after the dramatic failure of Ericsson's notorious paddle steamer in the early 1850s. Further ventures were aimed at the more limited goal of low horsepowers and generally ignored the regenerator principle.
In two recent articles by Russell and Whiteside, the reception of those particular conclusions of Kepler that have come to be called his laws of planetary motion has been subjected to the first research beyond the pioneering efforts of Delambre at the beginning of the nineteenth century. Independently conceived, and directed towards quite different ends, these two investigations overlapped in only one substantial area—their survey of citations of Kepler's second law by English astronomers between 1650 and 1670. Not surprisingly, they reached essentially identical conclusions about the situation in 1670. Finding ‘equant’ theories instead of the law of areas, wherever he looked, Russell qualified his general claim ‘that the importance of Kepler's ideas during the period [up to 1666] has been greatly underestimated’, to the extent of describing the history of the second law as ‘chequered’ and ‘complicated’. And Whiteside simply reported that Kepler's scheme for reckoning motion in the elliptical orbit ‘was seemingly firmly accepted by no one, and even its formal enunciation but rarely stated in the period’.