To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the approximate controllability of a size- and space-structured population model, for which the control function acts on a subdomain and corresponds to the migration of individuals. We establish the main result via the unique continuation property of the adjoint system. The desired controller is the minimizer of an infinite-dimensional optimization problem.
Based on the definition of divisibility of Markovian quantum dynamics, we discuss the Markovianity of tensor products, multiplications and some convex combinations of Markovian quantum dynamics. We prove that the tensor product of two Markovian dynamics is also a Markovian dynamics and propose a new witness of non-Markovianity.
This paper investigates interrelated price online inventory problems, in which decisions as to when and how much of a product to replenish must be made in an online fashion to meet some demand even without a concrete knowledge of future prices. The objective of the decision maker is to minimize the total cost while meeting the demands. Two different types of demand are considered carefully, that is, demands which are linearly and exponentially related to price. In this paper, the prices are online, with only the price range variation known in advance, and are interrelated with the preceding price. Two models of price correlation are investigated, namely, an exponential model and a logarithmic model. The corresponding algorithms of the problems are developed, and the competitive ratios of the algorithms are derived as the solutions by use of linear programming.
In this paper, we characterize Borel $\unicode[STIX]{x1D70E}$-fields of the set of all fuzzy numbers endowed with different metrics. The main result is that the Borel $\unicode[STIX]{x1D70E}$-fields with respect to all known separable metrics are identical. This Borel field is the Borel $\unicode[STIX]{x1D70E}$-field making all level cut functions of fuzzy mappings from any measurable space to the fuzzy number space measurable with respect to the Hausdorff metric on the cut sets. The relation between the Borel $\unicode[STIX]{x1D70E}$-field with respect to the supremum metric $d_{\infty }$ is also demonstrated. We prove that the Borel field is induced by a separable and complete metric. A global characterization of measurability of fuzzy-valued functions is given via the main result. Applications to fuzzy-valued integrals are given, and an approximation method is presented for integrals of fuzzy-valued functions. Finally, an example is given to illustrate the applications of these results in economics. This example shows that the results in this paper are basic to the theory of fuzzy-valued functions, such as the fuzzy version of Lebesgue-like integrals of fuzzy-valued functions, and are useful in applied fields.
We investigate delayed state feedback control of a periodic-review inventory management system with perishable goods. The stock under consideration is replenished from multiple supply sources. By using delayed states as well as current states of the inventory system, a delayed feedback $H_{\infty }$ control strategy is developed to mitigate bullwhip effects of the system. Some conditions on the existence of the delayed feedback $H_{\infty }$ controller are derived. It is found through simulation results that the proposed delayed $H_{\infty }$ control scheme is capable of improving the performance of the inventory management significantly. In addition, the delayed controller is better than the traditional delay-free $H_{\infty }$ controller.
We analyse the asymptotic behaviour of a biological system described by a stochastic competition model with $n$ species and $k$ resources (chemostat model), in which the species mortality rates are influenced by the fractional Brownian motion of the extrinsic noise environment. By constructing a Lyapunov functional, the persistence and extinction criteria are derived in the mean square sense. Some examples are given to illustrate the effectiveness of the theoretical result.
The beginning of the study of ordinary differential equations (ODE) could perhaps be attributed to Newton and Leibnitz, the inventors of differential and integral calculus. The theory began in the late 17th century with the early works of Newton, Leibnitz and Bernoulli. As was customary then, they were looking at the fundamental problems in geometry and celestial mechanics. There were also important contributions to the development of ODE, in the initial stages, by great mathematicians – Euler, Lagrange, Laplace, Fourier, Gauss, Abel, Hamilton and others. As the modern concept of function and analysis were not developed at that time, the aim was to obtain solutions of differential equations (and in turn, solutions to physical problems) in terms of elementary functions. The earlier methods in this direction are the concepts of integrating factors and method of separation of variables.
In the process of developing more systematic procedures, Euler, Lagrange, Laplace and others soon realized that it is hopeless to discover methods to solve differential equations. Even now, there are only a handful of sets of differential equations, that too in a simpler form, whose solutions may be written down in explicit form. It is in this scenario that the qualitative analysis – existence, uniqueness, stability properties, asymptotic behaviour and so on – of differential equations became very important. This qualitative analysis depends on the development of other branches of mathematics, especially analysis. Thus, a second phase in the study of differential equations started from the beginning of the 19th century based on a more rigorous approach to calculus via the mathematical analysis. We remark that the first existence theorem for first order differential equations is due to Cauchy in 1820. A class of differential equations known as linear differential equations, is much easier to handle. We will analyse linear equations and linear systems in more detail and see the extensive use of linear algebra; in particular, we will see how the nature of eigenvalues of a given matrix influences the stability of solutions.