We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We extend the Auslander–Iyama correspondence to the setting of exact dg categories. By specializing it to exact dg categories concentrated in degree zero, we obtain a generalization of the higher Auslander correspondence for exact categories due to Ebrahimi–Nasr-Isfahani (in the case of exact categories with split retractions).
Let $\mathcal {A}$ be an abelian length category containing a d-cluster tilting subcategory $\mathcal {M}$. We prove that a subcategory of $\mathcal {M}$ is a d-torsion class if and only if it is closed under d-extensions and d-quotients. This generalises an important result for classical torsion classes. As an application, we prove that the d-torsion classes in $\mathcal {M}$ form a complete lattice. Moreover, we use the characterisation to classify the d-torsion classes associated to higher Auslander algebras of type $\mathbb {A}$, and give an algorithm to compute them explicitly. The classification is furthermore extended to the setup of higher Nakayama algebras.
Let Λ be an artin algebra and $\mathcal{M}$ be an n-cluster tilting subcategory of Λ-mod with $n \geq 2$. From the viewpoint of higher homological algebra, a question that naturally arose in Ebrahimi and Nasr-Isfahani (The completion of d-abelian categories. J. Algebra645 (2024), 143–163) is when $\mathcal{M}$ induces an n-cluster tilting subcategory of Λ-Mod. In this article, we answer this question and explore its connection to Iyama’s question on the finiteness of n-cluster tilting subcategories of Λ-mod. In fact, our theorem reformulates Iyama’s question in terms of the vanishing of Ext and highlights its relation with the rigidity of filtered colimits of $\mathcal{M}$. Also, we show that ${\rm Add}(\mathcal{M})$ is an n-cluster tilting subcategory of Λ-Mod if and only if ${\rm Add}(\mathcal{M})$ is a maximal n-rigid subcategory of Λ-Mod if and only if $\lbrace X\in \Lambda-{\rm Mod}~|~ {\rm Ext}^i_{\Lambda}(\mathcal{M},X)=0 ~~~ {\rm for ~all}~ 0 \lt i \lt n \rbrace \subseteq {\rm Add}(\mathcal{M})$ if and only if $\mathcal{M}$ is of finite type if and only if ${\rm Ext}_{\Lambda}^1({\underrightarrow{\lim}}\mathcal{M}, {\underrightarrow{\lim}}\mathcal{M})=0$. Moreover, we present several equivalent conditions for Iyama’s question which shows the relation of Iyama’s question with different subjects in representation theory such as purity and covering theory.
In this paper, we investigate locally finitely presented pure semisimple (hereditary) Grothendieck categories. We show that every locally finitely presented pure semisimple (resp., hereditary) Grothendieck category $\mathscr {A}$ is equivalent to the category of left modules over a left pure semisimple (resp., left hereditary) ring when $\mathrm {Mod}(\mathrm {fp}(\mathscr {A}))$ is a QF-3 category, and every representable functor in $\mathrm {Mod}(\mathrm {fp}(\mathscr {A}))$ has finitely generated essential socle. In fact, we show that there exists a bijection between Morita equivalence classes of left pure semisimple (resp., left hereditary) rings $\Lambda $ and equivalence classes of locally finitely presented pure semisimple (resp., hereditary) Grothendieck categories $\mathscr {A}$ that $\mathrm {Mod}(\mathrm {fp}(\mathscr {A}))$ is a QF-3 category, and every representable functor in $\mathrm {Mod}(\mathrm {fp}(\mathscr {A}))$ has finitely generated essential socle. To prove this result, we study left pure semisimple rings by using Auslander’s ideas. We show that there exists, up to equivalence, a bijection between the class of left pure semisimple rings and the class of rings with nice homological properties. These results extend the Auslander and Ringel–Tachikawa correspondence to the class of left pure semisimple rings. As a consequence, we give several equivalent statements to the pure semisimplicity conjecture.
We extend the notion of regular coherence from rings to additive categories and show that well-known consequences of regular coherence for rings also apply to additive categories. For instance, the negative K-groups and all twisted Nil-groups vanish for an additive category, if it is regular coherent. This will be applied to nested sequences of additive categories, motivated by our ongoing project to determine the algebraic K-theory of the Hecke algebra of a reductive p-adic group.
Let $p \geq 5$ be a prime number, and let $G = {\mathrm {SL}}_2(\mathbb {Q}_p)$. Let $\Xi = {\mathrm {Spec}}(Z)$ denote the spectrum of the centre Z of the pro-p Iwahori–Hecke algebra of G with coefficients in a field k of characteristic p. Let $\mathcal {R} \subset \Xi \times \Xi $ denote the support of the pro-p Iwahori ${\mathrm {Ext}}$-algebra of G, viewed as a $(Z,Z)$-bimodule. We show that the locally ringed space $\Xi /\mathcal {R}$ is a projective algebraic curve over ${\mathrm {Spec}}(k)$ with two connected components and that each connected component is a chain of projective lines. For each Zariski open subset U of $\Xi /\mathcal {R}$, we construct a stable localising subcategory $\mathcal {L}_U$ of the category of smooth k-linear representations of G.
Hearts of cotorsion pairs on extriangulated categories are abelian categories. On the other hand, hearts of twin cotorsion pairs are not always abelian. They were shown to be semi-abelian by Liu and Nakaoka. Moreover, Hassoun and Shah proved that they are quasi-abelian under certain conditions. In this article, we first show that the heart of any twin cotorsion pair has a largest exact category structure and is always quasi-abelian. We also provide a sufficient and necessary condition for the heart of a twin cotorsion pair being abelian. Then by using the results we have got, we investigate the almost split sequences in the hearts of twin cotorsion pairs. Finally, as an application, we show that a Krull–Schmidt, Hom-finite triangulated category has a Serre functor whenever it has a cluster tilting object.
Clausen a prédit que le groupe des classes d’idèles de Chevalley d’un corps de nombres F apparaît comme le premier K-groupe de la catégorie des F-espaces vectoriels localement compacts. Cela s’est avéré vrai, et se généralise même aux groupes K supérieurs dans un sens approprié. Nous remplaçons F par une $\mathbb {Q}$-algèbre semi-simple, et obtenons le groupe des classes d’idèles noncommutatif de Fröhlich de manière analogue, modulo les éléments de norme réduite une. Même dans le cas du corps de nombres, notre preuve est plus simple que celle existante, et repose sur le théorème de localisation pour des sous-catégories percolées. Enfin, en utilisant la théorie des corps de classes, nous interprétons la loi de réciprocité d’Hilbert (ainsi qu’une variante noncommutative) en termes de nos résultats.
Clausen predicted that Chevalley’s idèle class group of a number field F appears as the first K-group of the category of locally compact F-vector spaces. This has turned out to be true and even generalizes to the higher K-groups in a suitable sense. We replace F by a semisimple $\mathbb {Q}$-algebra and obtain Fröhlich’s noncommutative idèle class group in an analogous fashion, modulo the reduced norm one elements. Even in the number field case, our proof is simpler than the existing one and based on the localization theorem for percolating subcategories. Finally, using class field theory as input, we interpret Hilbert’s reciprocity law (as well as a noncommutative variant) in terms of our results.
In this paper, we prove that the lower triangular matrix category $\Lambda =\left [ \begin{smallmatrix} \mathcal{T}&0\\ M&\mathcal{U} \end{smallmatrix} \right ]$, where $\mathcal{T}$ and $\mathcal{U}$ are $\textrm{Hom}$-finite, Krull–Schmidt $K$-quasi-hereditary categories and $M$ is an $\mathcal{U}\otimes _K \mathcal{T}^{op}$-module that satisfies suitable conditions, is quasi-hereditary. This result generalizes the work of B. Zhu in his study on triangular matrix algebras over quasi-hereditary algebras. Moreover, we obtain a characterization of the category of the $_\Lambda \Delta$-filtered $\Lambda$-modules.
The main theme of this paper is to study $\tau $-tilting subcategories in an abelian category $\mathscr {A}$ with enough projective objects. We introduce the notion of $\tau $-cotorsion torsion triples and investigate a bijection between the collection of $\tau $-cotorsion torsion triples in $\mathscr {A}$ and the collection of support $\tau $-tilting subcategories of $\mathscr {A}$, generalizing the bijection by Bauer, Botnan, Oppermann, and Steen between the collection of cotorsion torsion triples and the collection of tilting subcategories of $\mathscr {A}$. General definitions and results are exemplified using persistent modules. If $\mathscr {A}=\mathrm{Mod}\mbox {-}R$, where R is a unitary associative ring, we characterize all support $\tau $-tilting (resp. all support $\tau ^-$-tilting) subcategories of $\mathrm{Mod}\mbox {-}R$ in terms of finendo quasitilting (resp. quasicotilting) modules. As a result, it will be shown that every silting module (resp. every cosilting module) induces a support $\tau $-tilting (resp. support $\tau ^{-}$-tilting) subcategory of $\mathrm{Mod}\mbox {-}R$. We also study the theory in $\mathrm {Rep}(Q, \mathscr {A})$, where Q is a finite and acyclic quiver. In particular, we give an algorithm to construct support $\tau $-tilting subcategories in $\mathrm {Rep}(Q, \mathscr {A})$ from certain support $\tau $-tilting subcategories of $\mathscr {A}$.
Let $\mathcal{A}$ be a locally noetherian Grothendieck category. We classify all full subcategories of $\mathcal{A}$ which are thick and closed under taking arbitrary direct sums and injective envelopes by injective spectrum. This result gives a generalization from the commutative noetherian ring to the locally noetherian Grothendieck category.
Let $({\cal{A}},{\cal{E}})$ be an exact category. We establish basic results that allow one to identify sub(bi)functors of ${\operatorname{Ext}}_{\cal{E}}(-,-)$ using additivity of numerical functions and restriction to subcategories. We also study a small number of these new functors over commutative local rings in detail and find a range of applications from detecting regularity to understanding Ulrich modules.
This paper is devoted to the study of generalized tilting theory of functor categories in different levels. First, we extend Miyashita’s proof (Math Z 193:113–146,1986) of the generalized Brenner–Butler theorem to arbitrary functor categories $\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C})$ with $\mathcal{C}$ an annuli variety. Second, a hereditary and complete cotorsion pair generated by a generalized tilting subcategory $\mathcal{T}$ of $\mathop{\textrm{Mod}}\nolimits \!(\mathcal{C})$ is constructed. Some applications of these two results include the equivalence of Grothendieck groups $K_0(\mathcal{C})$ and $K_0(\mathcal{T})$, the existences of a new abelian model structure on the category of complexes $\mathop{\textrm{C}}\nolimits \!(\!\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C}))$, and a t-structure on the derived category $\mathop{\textrm{D}}\nolimits \!(\!\mathop{\textrm{Mod}}\nolimits \!(\mathcal{C}))$.
Let
$\textsf{T}$
be a triangulated category with shift functor
$\Sigma \colon \textsf{T} \to \textsf{T}$
. Suppose
$(\textsf{A},\textsf{B})$
is a co-t-structure with coheart
$\textsf{S} = \Sigma \textsf{A} \cap \textsf{B}$
and extended coheart
$\textsf{C} = \Sigma^2 \textsf{A} \cap \textsf{B} = \textsf{S}* \Sigma \textsf{S}$
, which is an extriangulated category. We show that there is a bijection between co-t-structures
$(\textsf{A}^{\prime},\textsf{B}^{\prime})$
in
$\textsf{T}$
such that
$\textsf{A} \subseteq \textsf{A}^{\prime} \subseteq \Sigma \textsf{A}$
and complete cotorsion pairs in the extended coheart
$\textsf{C}$
. In the case that
$\textsf{T}$
is Hom-finite,
$\textbf{k}$
-linear and Krull–Schmidt, we show further that there is a bijection between complete cotorsion pairs in
$\textsf{C}$
and functorially finite torsion classes in
$\textsf{mod}\, \textsf{S}$
.
We study the Rouquier dimension of wrapped Fukaya categories of Liouville manifolds and pairs, and apply this invariant to various problems in algebraic and symplectic geometry. On the algebro-geometric side, we introduce a new method based on symplectic flexibility and mirror symmetry to bound the Rouquier dimension of derived categories of coherent sheaves on certain complex algebraic varieties and stacks. These bounds are sharp in dimension at most $3$. As an application, we resolve a well-known conjecture of Orlov for new classes of examples (e.g. toric $3$-folds, certain log Calabi–Yau surfaces). We also discuss applications to non-commutative motives on partially wrapped Fukaya categories. On the symplectic side, we study various quantitative questions including the following. (1) Given a Weinstein manifold, what is the minimal number of intersection points between the skeleton and its image under a generic compactly supported Hamiltonian diffeomorphism? (2) What is the minimal number of critical points of a Lefschetz fibration on a Liouville manifold with Weinstein fibers? We give lower bounds for these quantities which are to the best of the authors’ knowledge the first to go beyond the basic flexible/rigid dichotomy.
Let R be a commutative Noetherian ring. We prove that if R is either an equidimensional finitely generated algebra over a perfect field, or an equidimensional equicharacteristic complete local ring with a perfect residue field, then the annihilator of the singularity category of R coincides with the Jacobian ideal of R up to radical. We establish a relationship between the annihilator of the singularity category of R and the cohomological annihilator of R under some mild assumptions. Finally, we give an upper bound for the dimension of the singularity category of an equicharacteristic excellent local ring with isolated singularity. This extends a result of Dao and Takahashi to non-Cohen–Macaulay rings.
The goal of the article is to better understand cosupport in triangulated categories since it is still quite mysterious. We study boundedness of local cohomology and local homology functors using Koszul objects, give some characterizations of cosupport, and get some results that, in special cases, recover and generalize the known results about the usual cosupport. Additionally, we include some computations of cosupport and provide a comparison of support and cosupport for cohomologically finite objects. Finally, we assign to any object of the category a subset of $\mathrm {Spec}R$, called the big cosupport, and study some of its properties.
For a weight structure w on a triangulated category $\underline {C}$ we prove that the corresponding weight complex functor and some other (weight-exact) functors are ‘conservative up to weight-degenerate objects’; this improves earlier conservativity formulations. In the case $w=w^{sph}$ (the spherical weight structure on $SH$), we deduce the following converse to the stable Hurewicz theorem: $H^{sing}_{i}(M)=\{0\}$ for all $i<0$ if and only if $M\in SH$ is an extension of a connective spectrum by an acyclic one. We also prove an equivariant version of this statement.
The main idea is to study M that has no weights$m,\dots ,n$ (‘in the middle’). For $w=w^{sph}$, this is the case if there exists a distinguished triangle $LM\to M\to RM$, where $RM$ is an n-connected spectrum and $LM$ is an $m-1$-skeleton (of M) in the sense of Margolis’s definition; this happens whenever $H^{sing}_i(M)=\{0\}$ for $m\le i\le n$ and $H^{sing}_{m-1}(M)$ is a free abelian group. We also consider morphisms that kill weights$m,\dots ,n$; those ‘send n-w-skeleta into $m-1$-w-skeleta’.
We prove that the derived categories of abelian categories have unique enhancements—all of them, the unbounded, bounded, bounded above and bounded below derived categories. The unseparated and left completed derived categories of a Grothendieck abelian category are also shown to have unique enhancements. Finally, we show that the derived category of complexes with quasi-coherent cohomology and the category of perfect complexes have unique enhancements for quasi-compact and quasi-separated schemes.
We prove that a finite-dimensional algebra
$ \Lambda $
is
$ \tau $
-tilting finite if and only if all the bricks over
$ \Lambda $
are finitely generated. This is obtained as a consequence of the existence of proper locally maximal torsion classes for
$ \tau $
-tilting infinite algebras.