Skip to main content Accessibility help
×
Home
1D Semiconducting Nanostructures for Flexible and Large-Area Electronics

1D Semiconducting Nanostructures for Flexible and Large-Area Electronics

Semiconducting nanostructures such as nanowires (NWs) have been used as building blocks for various types of sensors, energy storage and generation devices, electronic devices and for new manufacturing methods involving printed NWs. The response of these sensing/energy/electronic components and the new fabrication methods depends very much on the quality of NWs and for this reason it is important to understand the growth mechanism of 1D semiconducting nanostructures. This is also important to understand the compatibility of NW growth steps and tools used in the process with these unconventional substrates such as plastic that are used in flexible and large area electronics. Therefore, this Element presents at length discussion about the growth mechanisms, growth conditions and the tools used for the synthesis of NWs. Although NWs from Si, ZnO and carbon nanotubes (CNTs) are included, the discussion is generic and relevant to several other types of NWs as well as heterostructures.

  • Copyright

  • COPYRIGHT: © Dhayalan Shakthivel, Muhammad Ahmad, Mohammad R. Alenezi, Ravinder Dahiya and S. Ravi P. Silva 2019

References

Hide all
[15] R. Saito , G. Dresselhaus , and M. S. Dresselhaus , Physical properties of carbon nanotubes. World Scientific, 1998. CrossRef | Google Scholar
[5] C. M. Lieber , “One-dimensional nanostructures: chemistry, physics & applications,” Solid State Commun., vol. 107, no. 11, pp. 607–616, 1998. CrossRef | Google Scholar
[8] Y. Li , F. Qian , J. Xiang , and C. M. Lieber , “Nanowire electronic and optoelectronic devices,” Mater. Today., vol. 9, no. 10, pp. 18–27, 2006. CrossRef | Google Scholar
80[45] S. Khan , N. Yogeswaran , W. Taube , L. Lorenzelli , and R. Dahiya , “Flexible FETs using ultrathin Si microwires embedded in solution processed dielectric and metal layers,” J. Micromech. Microeng., vol. 25, no. 12, p. 125019, 2015. CrossRef | Google Scholar
[47] W. Dang , V. Vinciguerra , L. Lorenzelli , and R. Dahiya , “Printable stretchable interconnects,” Flex. Print. Electron., vol. 2, no. 1, p. 013003, 2017. CrossRef | Google Scholar
[9] F. Patolsky , G. Zheng , and C. M. Lieber , “Nanowire-based biosensors,” ed: ACS Publications, Anal. Chem, Vol. 78, no. 13, pp. 4260–4269, 2006. Google Scholar
[21] M. Paladugu , et al., “Novel growth phenomena observed in axial InAs/GaAs nanowire heterostructures,” Small, vol. 3, no. 11, pp. 1873–1877, 2007. CrossRef | Google Scholar
  • PubMed
  • [52] Y.-Z. Long , M. Yu , B. Sun , C.-Z. Gu , and Z. Fan , “Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics,” Chem. Soc. Rev., vol. 41, no. 12, pp. 4560–4580, 2012. CrossRef | Google Scholar
  • PubMed
  • 81[58] N. Wang , Y. Cai , and R. Q. Zhang , “Growth of nanowires,” Mater. Sci. Eng. Rep., vol. 60, no. 1–6, pp. 1–51, 3/31/ 2008. CrossRef | Google Scholar
    [4] Y. Xia , et al., “One‐dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater., vol. 15, no. 5, pp. 353–389, 2003. CrossRef | Google Scholar
    [37] R. Sporea , M. Trainor , N. Young , J. Shannon , and S. Silva , “Source-gated transistors for order-of-magnitude performance improvements in thin-film digital circuits,” Sci. Rep., vol. 4, 2014. Google Scholar
  • PubMed
  • [49] D. Shakthivel , C. García Núñez , and R. Dahiya , “Inorganic semiconducting nanowires for flexible electronics,” United Scholars Publications, USA, 2016. Google Scholar
    [54] D. Shakthivel , F. Liu , C. G. Núñez , W. Taube , and R. Dahiya , “Nanomaterials processing for flexible electronics,” in Industrial Electronics (ISIE), 2017 IEEE 26th International Symposium on, 2017, pp. 2102–2106: IEEE. CrossRef | Google Scholar
    [64] R. Wagner and C. Doherty , “Controlled vapor‐liquid‐solid growth of silicon crystals,” J. Electrochem. Soc., vol. 113, no. 12, pp. 1300–1305, 1966. CrossRef | Google Scholar
    [10] X. Chen , C. K. Wong , C. A. Yuan , and G. Zhang , “Nanowire-based gas sensors,” Sens. Actuator B-Chem., vol. 177, pp. 178–195, 2013. CrossRef | Google Scholar
    [24] C. M. Lieber and Z. L. Wang , “Functional nanowires,” MRS Bull., vol. 32, no. 2, pp. 99–108, 2007. CrossRef | Google Scholar
    [26] Y. Sun and J. A. Rogers , Semiconductor nanomaterials for flexible technologies: From photovoltaics and electronics to sensors and energy storage. William Andrew, 2010. Google Scholar
    [34] D. Striakhilev , A. Nathan , Y. Vygranenko , P. Servati , C.-H. Lee , and A. Sazonov , “Amorphous silicon display backplanes on plastic substrates,” J. Disp. Technol., vol. 2, no. 4, pp. 364–371, 2006. CrossRef | Google Scholar
    [38] S. J. Kim , K. Choi , B. Lee , Y. Kim , and B. H. Hong , “Materials for flexible, stretchable electronics: graphene and 2D materials,” Ann. Rev. Mater. Res., vol. 45, pp. 63–84, 2015. CrossRef | Google Scholar
    [43] P. H. Lau , et al., “Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates,” Nano Lett., vol. 13, no. 8, pp. 3864–3869, 2013. CrossRef | Google Scholar
  • PubMed
  • [51] M. Kwiat , S. Cohen , A. Pevzner , and F. Patolsky , “Large-scale ordered 1D-nanomaterials arrays: Assembly or not?,” Nano Today, vol. 8, no. 6, pp. 677–694, 2013. CrossRef | Google Scholar
    [59] A. Zhang , G. Zheng , and C. M. Lieber , Nanowires: Building blocks for nanoscience and nanotechnology. Springer, 2016. CrossRef | Google Scholar
    [62] R. G. Hobbs , N. Petkov , and J. D. Holmes , “Semiconductor nanowire fabrication by bottom-up and top-down paradigms,” Chem. Mater., vol. 24, no. 11, pp. 1975–1991, 2012. CrossRef | Google Scholar
    [3] C. Guozhong , Nanostructures and nanomaterials: synthesis, properties and applications. World Scientific, 2004. Google Scholar
    [46] S. Khan , L. Lorenzelli , and R. Dahiya , “Flexible MISFET devices from transfer printed Si microwires and spray coating,” IEEE. J. Electron. Devi., vol. 4, no. 4, pp. 189–196, 2016. CrossRef | Google Scholar
    [61] N. Singh , et al., “Si, SiGe nanowire devices by top-down technology and their applications,” IEEE. T. Electron. Dev., vol. 55, no. 11, pp. 3107–3118, 2008. CrossRef | Google Scholar
    [16] M. M. Shulaker , et al., “Carbon nanotube computer,” Nature, vol. 501, no. 7468, p. 526, 2013. CrossRef | Google Scholar
  • PubMed
  • [40] C. García Núñez , W. T. Navaraj , E. O. Polat , and R. Dahiya , “Energy autonomous flexible and transparent tactile skin,” Adv. Funct. Mater, vol. 27, no. 18, 2017. Google Scholar
    [1] G. Hodes , “When small is different: some recent advances in concepts and applications of nanoscale phenomena,” Adv. Mater., vol. 19, no. 5, pp. 639–655, 2007. CrossRef | Google Scholar
    [11] Y. Qi and M. C. McAlpine , “Nanotechnology-enabled flexible and biocompatible energy harvesting,” Energ. Environ. Sci., vol. 3, no. 9, pp. 1275–1285, 2010. CrossRef | Google Scholar
    [7] O. Hayden , R. Agarwal , and W. Lu , “Semiconductor nanowire devices,” Nano Today, vol. 3, no. 5–6, pp. 12–22, 2008. CrossRef | Google Scholar
    [19] L. J. Lauhon , M. S. Gudiksen , D. Wang , and C. M. Lieber , “Epitaxial core–shell and core–multishell nanowire heterostructures,” Nature, vol. 420, no. 6911, pp. 57–61, 2002. CrossRef | Google Scholar
  • PubMed
  • [23] Y. Sun and J. A. Rogers , “Inorganic semiconductors for flexible electronics,” Adv. Mater., vol. 19, no. 15, pp. 1897–1916, 2007. CrossRef | Google Scholar
    [31] F. L. C. G. Núñez , S. Xu and R. Dahiya , “Large-area electronics based on micro/nanostructures and the manufacturing technologies,” Cambridge Elements (2018), In press. Google Scholar
    [57] Z. Fan , et al., “Toward the development of printable nanowire electronics and sensors,” Adv. Mater., vol. 21, no. 37, pp. 3730–3743, 2009. CrossRef | Google Scholar
    [13] E. C. Garnett , M. L. Brongersma , Y. Cui , and M. D. McGehee , “Nanowire solar cells,” Ann. Rev. Mater. Res., vol. 41, pp. 269–295, 2011. CrossRef | Google Scholar
    78[17] C. Rao and A. Govindaraj , “Synthesis of inorganic nanotubes,” Adv. Mater., vol. 21, no. 42, pp. 4208–4233, 2009. CrossRef | Google Scholar
    [20] K. Takei , et al., “Nanowire active-matrix circuitry for low-voltage macroscale artificial skin,” Nat. Mater., vol. 9, no. 10, pp. 821–826, 2010. CrossRef | Google Scholar
  • PubMed
  • [33] C. G. Nunez , W. Taube , F. Liu , and R. Dahiya , “ZnO nanowires based flexible UV photodetectors for wearable dosimetry,” in SENSORS, 2017 IEEE, 2017, pp. 1–3: IEEE. Google Scholar
    [56] R. Dahiya , G. Gottardi , and N. Laidani , “PDMS residues-free micro/macrostructures on flexible substrates,” Microelectron. Eng., vol. 136, pp. 57–62, 2015. CrossRef | Google Scholar
    [27] M. R. Alenezi , S. J. Henley , N. G. Emerson , and S. R. P. Silva , “From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties,” Nanoscale, vol. 6, no. 1, pp. 235–247, 2014. CrossRef | Google Scholar
  • PubMed
  • [41] E. O. Polat , O. Balci , N. Kakenov , H. B. Uzlu , C. Kocabas , and R. Dahiya , “Synthesis of large area graphene for high performance in flexible optoelectronic devices,” Sci. Rep., vol. 5, p. 16744, 2015. CrossRef | Google Scholar
  • PubMed
  • [55] B. Su , Y. Wu , and L. Jiang , “The art of aligning one-dimensional (1D) nanostructures,” Chem. Soc. Rev., vol. 41, no. 23, pp. 7832–7856, 2012. CrossRef | Google Scholar
  • PubMed
  • [60] M. Amato , M. Palummo , R. Rurali , and S. Ossicini , “Silicon–germanium nanowires: chemistry and physics in play, from basic principles to advanced applications,” Chem. Rev., vol. 114, no. 2, pp. 1371–1412, 2013. CrossRef | Google Scholar
  • PubMed
  • [29] C. Garcia Nunez , W. T. Navaraj , F. Liu , D. Shakthivel , and R. Dahiya , “Large-area self-assembly of silica microspheres/nanospheres by temperature-assisted dip-coating,” ACS Appl. Mater. Inter, vol. 10, no. 3, pp. 3058–3068, 2018. CrossRef | Google Scholar
  • PubMed
  • [6] P. Yang , “The chemistry and physics of semiconductor nanowires,” MRS Bull., vol. 30, no. 2, pp. 85–91, 2005. CrossRef | Google Scholar
    [36] L. Petti , et al., “Metal oxide semiconductor thin-film transistors for flexible electronics,” Appl. Phys. Rev., vol. 3, no. 2, p. 021303, 2016. CrossRef | Google Scholar
    [63] R. S. Wagner and W. C. Ellis , “Vapor‐liquid‐solid mechanism of single crystal growth,” Appl. Phys. Lett, vol. 4, no. 5, pp. 89–90, 1964. CrossRef | Google Scholar
    [12] F.-R. Fan , Z.-Q. Tian , and Z. L. Wang , “Flexible triboelectric generator,” Nano Energy, vol. 1, no. 2, pp. 328–334, 2012. CrossRef | Google Scholar
    [14] C. K. Chan , X. F. Zhang , and Y. Cui , “High capacity Li ion battery anodes using Ge nanowires,” Nano Lett., vol. 8, no. 1, pp. 307–309, 2008. CrossRef | Google Scholar
  • PubMed
  • [22] N. P. Dasgupta , et al., “25th anniversary article: semiconductor nanowires–synthesis, characterization, and applications,” Adv. Mater., vol. 26, no. 14, pp. 2137–2184, 2014. CrossRef | Google Scholar
  • PubMed
  • [39] D. Akinwande , N. Petrone , and J. Hone , “Two-dimensional flexible nanoelectronics,” Nat. Commun., vol. 5, p. 5678, 2014. CrossRef | Google Scholar
  • PubMed
  • [42] C. Wang , et al., “Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications,” Nano Lett., vol. 12, no. 3, pp. 1527–1533, 2012. CrossRef | Google Scholar
  • PubMed
  • [48] R. S. Dahiya , A. Adami , C. Collini , and L. Lorenzelli , “Fabrication of single crystal silicon micro-/nanostructures and transferring them to flexible substrates,” Microelectron. Eng., vol. 98, pp. 502–507, 2012. CrossRef | Google Scholar
    [25] Z. Liu , J. Xu , D. Chen , and G. Shen , “Flexible electronics based on inorganic nanowires,” Chem. Soc. Rev., vol. 44, no. 1, pp. 161–192, 2015. CrossRef | Google Scholar
  • PubMed
  • [30] F. L. C. G. Nunez , W. T. Navaraj , A. Christou , D. Shakthivel , and R. Dahiya , “Heterogeneous integration of contact-printed semiconductor nanowires for high performance devices on large areas,” Microsyst Nanoeng, 2018. Google Scholar
    [50] M.-C. Choi , Y. Kim , and C.-S. Ha , “Polymers for flexible displays: From material selection to device applications,” Prog. Polym. Sci., vol. 33, no. 6, pp. 581–630, 2008. CrossRef | Google Scholar
    [28] B. O. Boskovic , V. Stolojan , R. U. Khan , S. Haq , and S. R. P. Silva , “Large-area synthesis of carbon nanofibres at room temperature,” Nat. Mater., vol. 1, no. 3, pp. 165–168, 2002. CrossRef | Google Scholar
  • PubMed
  • [35] A. Nathan , et al., “Flexible electronics: the next ubiquitous platform,” Proc. IEEE., vol. 100, no. Special Centennial Issue, pp. 1486–1517, 2012. CrossRef | Google Scholar
    [44] S. Khan , R. S. Dahiya , and L. Lorenzelli , “Flexible thermoelectric generator based on transfer printed Si microwires,” in Solid State Device Research Conference (ESSDERC), 2014 44th European, 2014, pp. 86–89: IEEE. CrossRef | Google Scholar
    [2] V. T. Liveri , Controlled synthesis of nanoparticles in microheterogeneous systems. Springer Science & Business Media, 2006. Google Scholar
    [18] J. Goldberger , R. Fan , and P. Yang , “Inorganic nanotubes: a novel platform for nanofluidics,” Accounts Chem. Res., vol. 39, no. 4, pp. 239–248, 2006. CrossRef | Google Scholar
  • PubMed
  • 79[32] C. G. Núñez , F. Liu , W. T. Navaraj , A. Christou , D. Shakthivel , and R. Dahiya , “Heterogeneous integration of contact-printed semiconductor nanowires for high-performance devices on large areas,” Microsyst Nanoeng, vol. 4, no. 1, p. 22, 2018. CrossRef | Google Scholar
    [53] A. Javey , S. Nam , R. S. Friedman , H. Yan , and C. M. Lieber , “Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics,” Nano Lett., vol. 7, no. 3, pp. 773–777, 2007. CrossRef | Google Scholar
  • PubMed
  • [67] D. Shakthivel , W. Taube , S. Raghavan , and R. Dahiya , “VLS growth mechanism of Si-nanowires for flexible electronics,” in IEEE 11th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME), 2015, pp. 349–352. Google Scholar
    [69] Z. R. Dai , Z. W. Pan , and Z. L. Wang , “Novel nanostructures of functional oxides synthesized by thermal evaporation,” Adv. Funct. Mater, vol. 13, no. 1, pp. 9–24, 2003. CrossRef | Google Scholar
    [77] V. Schmidt , J. V. Wittemann , S. Senz , and U. Gösele , “Silicon nanowires: a review on aspects of their growth and their electrical properties,” Adv. Mater., vol. 21, no. 25–26, pp. 2681–2702, 2009. CrossRef | Google Scholar
    [87] J. E. Allen , et al., “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol., vol. 3, no. 3, pp.168–173, 2008. CrossRef | Google Scholar
  • PubMed
  • [106] A. M. Morales and C. M. Lieber , “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science, vol. 279, no. 5348, pp. 208–211, 1998. CrossRef | Google Scholar
  • PubMed
  • 82[72] N. G. Shang , Y. Y. Tan , V. Stolojan , P. Papakonstantinou , and S. R. P. Silva , “High-rate low-temperature growth of vertically aligned carbon nanotubes,” Nanotechnology, vol. 21, no. 50, p. 6, Dec 2010. CrossRef | Google Scholar
  • PubMed
  • [84] J. Hannon , S. Kodambaka , F. Ross , and R. Tromp , “The influence of the surface migration of gold on the growth of silicon nanowires,” Nature, vol. 440, no. 7080, pp.69–71, 2006. CrossRef | Google Scholar
    [89] T. Baron , M. Gordon , F. Dhalluin , C. Ternon , P. Ferret , and P. Gentile , “Si nanowire growth and characterization using a microelectronics-compatible catalyst: PtSi,” Appl. Phys. Lett., vol. 89, no. 23, p.233111, 2006. CrossRef | Google Scholar
    [96] S. Sharma and M. Sunkara , “Direct synthesis of single-crystalline silicon nanowires using molten gallium and silane plasma,” Nanotechnology, vol. 15, no. 1, p. 130, 2003. CrossRef | Google Scholar
    [112] H. O. Pierson , Handbook of chemical vapor deposition: principles, technology and applications. William Andrew, 1999. Google Scholar
    [128] D. Shakthivel and S. Raghavan , “Vapor-liquid-solid growth of Si nanowires: A kinetic analysis,” J. Appl. Phys., vol. 112, no. 2, p. 024317, 2012. CrossRef | Google Scholar
    [65] R. Wagner and C. Ooherty , “Mechanism of branching and kinking during VLS crystal growth,” J. Electrochem. Soc., vol. 115, no. 1, pp. 93–99, 1968. CrossRef | Google Scholar
    [105] B. Fuhrmann , H. S. Leipner , H.-R. Höche , L. Schubert , P. Werner , and U. Gösele , “Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy,” Nano Lett., vol. 5, no. 12, pp. 2524–2527, 2005. CrossRef | Google Scholar
  • PubMed
  • [119] J. Wallentin and M. T. Borgström , “Doping of semiconductor nanowires,” J. Mater. Res., vol. 26, no. 17, pp. 2142–2156, 2011. CrossRef | Google Scholar
    [110] M. M. Khalaf , H. G. Ibrahimov , and E. H. Ismailov , “Nanostructured materials: importance, synthesis and characterization—a review,” Chemistry Journal vol. 2, no. 3, pp. 118–125, 2012. Google Scholar
    [66] X. Liu , Y.-Z. Long , L. Liao , X. Duan , and Z. Fan , “Large-scale integration of semiconductor nanowires for high-performance flexible electronics,” ACS Nano, vol. 6, no. 3, pp. 1888–1900, 2012. CrossRef | Google Scholar
  • PubMed
  • [94] A. Handbook , “Vol. 3: Alloy phase diagrams,” ASM International, vol. 9, p. 2, 1992. Google Scholar
    84[100] D.-H. Kim , et al., “Stretchable and foldable silicon integrated circuits,” Science, vol. 320, no. 5875, pp. 507–511, 2008. CrossRef | Google Scholar
  • PubMed
  • [123] G. Bootsma and H. Gassen , “A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane,” J. Cryst. Growth, vol. 10, no. 3, pp. 223–234, 1971. CrossRef | Google Scholar
    [126] L. Fröberg , W. Seifert , and J. Johansson , “Diameter-dependent growth rate of InAs nanowires,” Phys. Rev. B, vol. 76, no. 15, p. 153401, 2007. CrossRef | Google Scholar
    [127] D. Kashchiev , “Dependence of the growth rate of nanowires on the nanowire diameter,” Cryst. Growth. Des., vol. 6, no. 5, pp. 1154–1156, 2006. CrossRef | Google Scholar
    [97] S.-Y. Choi , W. Y. Fung , and W. Lu , “Growth and electrical properties of Al-catalyzed Si nanowires,” Appl. Phys. Lett., vol. 98, no. 3, p. 033108, 2011. Google Scholar
    [117] F. Qian , Y. Li , S. Gradecak , D. Wang , C. J. Barrelet , and C. M. Lieber , “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett., vol. 4, no. 10, pp. 1975–1979, 2004. CrossRef | Google Scholar
    [122] E. I. Givargizov and N. N. Sheftal , “Morphology of silicon whiskers grown by the VLS-technique,” J. Cryst. Growth, vol. 9, no. 0, pp. 326–329, 5, 1971. CrossRef | Google Scholar
    [73] Y. Y. Tan , et al., “Photo-thermal chemical vapor deposition growth of graphene,” Carbon, vol. 50, no. 2, pp.668–673, Feb 2012. CrossRef | Google Scholar
    83[86] O. Moutanabbir , D. Isheim , H. Blumtritt , S. Senz , E. Pippel , and D. N. Seidman , “Colossal injection of catalyst atoms into silicon nanowires,” Nature, vol. 496, no. 7443, pp.78–82, 2013. CrossRef | Google Scholar
  • PubMed
  • [99] S. Khan , L. Lorenzelli , and R. S. Dahiya , “Technologies for printing sensors and electronics over large flexible substrates: a review,” IEEE. Sens. J., vol. 15, no. 6, pp. 3164–3185, 2015. CrossRef | Google Scholar
    [111] M. L. Hitchman and K. F. Jensen , Chemical vapor deposition: principles and applications. Elsevier, 1993. Google Scholar
    [115] A. Gamalski , C. Ducati , and S. Hofmann , “Cyclic supersaturation and triple phase boundary dynamics in germanium nanowire growth,” J. Phys. Chem. B, vol. 115, no. 11, pp. 4413–4417, 2011. Google Scholar
    [116] J. Xiang , W. Lu , Y. Hu , Y. Wu , H. Yan , and C. M. Lieber , “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature, vol. 441, no. 7092, pp. 489–493, 2006. CrossRef | Google Scholar
  • PubMed
  • [121] E. Givargizov , “Fundamental aspects of VLS growth,” J. Cryst. Growth., vol. 31, pp. 20–30, 1975. CrossRef | Google Scholar
    [70] C. D. Scott , S. Arepalli , P. Nikolaev , and R. E. Smalley , “Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process,” Appl. Phys. A-Mater., vol. 72, no. 5, pp. 573–580, May 2001. CrossRef | Google Scholar
    [83] F. M. Ross , “Controlling nanowire structures through real time growth studies,” Rep. Prog. Phys., vol. 73, no. 11, p.114501, 2010. CrossRef | Google Scholar
    [88] J. L. Lensch-Falk , E. R. Hemesath , D. E. Perea , and L. J. Lauhon , “Alternative catalysts for VSS growth of silicon and germanium nanowires,” J. Mater. Chem., 10.1039/B817391E vol. 19, no. 7, pp.849–857, 2009. CrossRef | Google Scholar
    [107] Y. Zhang , et al., “Silicon nanowires prepared by laser ablation at high temperature,” Appl. Phys. Lett., vol. 72, no. 15, pp. 1835–1837, 1998. CrossRef | Google Scholar
    [124] S. Kodambaka , J. Tersoff , M. Reuter , and F. Ross , “Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires,” Phys. Rev. Lett., vol. 96, no. 9, p. 096105, 2006. CrossRef | Google Scholar
  • PubMed
  • [76] V. Schmidt , J. V. Wittemann , and U. Gösele , “Growth, thermodynamics, and electrical properties of silicon nanowires,” Chem. Rev., vol. 110, no. 1, pp. 361–388, 2010. CrossRef | Google Scholar
  • PubMed
  • [68] H. J. Fan , F. Bertram , A. Dadgar , J. Christen , A. Krost , and M. Zacharias , “Self-assembly of ZnO nanowires and the spatial resolved characterization of their luminescence,” Nanotechnology, vol. 15, no. 11, p. 1401, 2004. CrossRef | Google Scholar
    [103] W. Lu and C. M. Lieber , “Nanoelectronics from the bottom up,” Nat. Mater., vol. 6, no. 11, pp. 841–850, 2007. CrossRef | Google Scholar
  • PubMed
  • [109] M. J. Bierman , Y. A. Lau , A. V. Kvit , A. L. Schmitt , and S. Jin , “Dislocation-driven nanowire growth and Eshelby twist,” Science, vol. 320, no. 5879, pp. 1060–1063, 2008. CrossRef | Google Scholar
  • PubMed
  • [113] B. Kim , J. Tersoff , S. Kodambaka , M. Reuter , E. Stach , and F. Ross , “Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth,” Science, vol. 322, no. 5904, pp. 1070–1073, 2008. CrossRef | Google Scholar
  • PubMed
  • [120] C. Yang , Z. Zhong , and C. M. Lieber , “Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires,” Science, vol. 310, no. 5752, pp. 1304–1307, 2005. CrossRef | Google Scholar
  • PubMed
  • [80] H. Schmid , et al., “Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si (111) using silane,” J. Appl. Phys., vol. 103, no. 2, p. 024304, 2008. CrossRef | Google Scholar
    [102] H. Han , Z. Huang , and W. Lee , “Metal-assisted chemical etching of silicon and nanotechnology applications,” Nano Today, vol. 9, no. 3, pp. 271–304, 2014. CrossRef | Google Scholar
    85[114] S. Hofmann , et al., “In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation,” Nano Lett., vol. 7, no. 3, pp. 602–608, 2007. CrossRef | Google Scholar
  • PubMed
  • [125] K. J. Laidler , Chemical Kinetics. Delhi: Pearson Education, 2008. Google Scholar
    [71] S. H. Jung , et al., “High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen,” Appl. Phys. A-Mater., vol. 76, no. 2, pp.285–286, Feb 2003. CrossRef | Google Scholar
    [92] C. W. Pinion , D. P. Nenon , J. D. Christesen , and J. F. Cahoon , “Identifying crystallization- and incorporation-limited regimes during vapor–liquid–solid growth of Si nanowires,” ACS Nano, vol. 8, no. 6, pp. 6081–6088, 2014. CrossRef | Google Scholar
  • PubMed
  • [74] J.-H. Ahn , et al., “Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials,” Science, vol. 314, no. 5806, pp.1754–1757, 2006. CrossRef | Google Scholar
  • PubMed
  • [78] B. O. Boskovic , V. Stolojan , R. U. A. Khan , S. Haq , and S. R. P. Silva , “Large-area synthesis of carbon nanofibres at room temperature,” Nat. Mater., vol. 1, no. 3, pp.165–168, Nov 2002. CrossRef | Google Scholar
  • PubMed
  • [118] H. Schmid , M. T. Björk , J. Knoch , S. Karg , H. Riel , and W. Riess , “Doping limits of grown in situ doped silicon nanowires using phosphine,” Nano Lett., vol. 9, no. 1, pp. 173–177, 2008. CrossRef | Google Scholar
    [75] R. Yerushalmi , Z. A. Jacobson , J. C. Ho , Z. Fan , and A. Javey , “Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing,” Appl. Phys. Lett, vol. 91, no. 20, p. 203104, 2007. CrossRef | Google Scholar
    [79] Y. Wang , V. Schmidt , S. Senz , and U. Gösele , “Epitaxial growth of silicon nanowires using an aluminium catalyst,” Nat. Nanotechnol., vol. 1, no. 3, pp.186–189, 2006. CrossRef | Google Scholar
  • PubMed
  • [91] V. Schmidt , S. Senz , and U. Gösele , “Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor-liquid-solid mechanism,” Phys. Rev. B, vol. 75, no. 4, p.045335, 2007. CrossRef | Google Scholar
    [108] J.-S. Lee , M.-I. Kang , S. Kim , M.-S. Lee , and Y.-K. Lee , “Growth of zinc oxide nanowires by thermal evaporation on vicinal Si (100) substrate,” J. Cryst. Growth., vol. 249, no. 1, pp. 201–207, 2003. CrossRef | Google Scholar
    [90] L. Cao , B. Garipcan , J. S. Atchison , C. Ni , B. Nabet , and J. E. Spanier , “Instability and transport of metal catalyst in the growth of tapered silicon nanowires,” Nano Lett., vol. 6, no. 9, pp. 1852–1857, 2006. CrossRef | Google Scholar
  • PubMed
  • [81] K.-K. Lew and J. M. Redwing , “Growth characteristics of silicon nanowires synthesized by vapor–liquid–solid growth in nanoporous alumina templates,” J. Cryst. Growth., vol. 254, no. 1, pp.14–22, 2003. CrossRef | Google Scholar
    [95] M. K. Sunkara , S. Sharma , R. Miranda , G. Lian , and E. Dickey , “Bulk synthesis of silicon nanowires using a low-temperature vapor–liquid–solid method,” Appl. Phys. Lett, vol. 79, no. 10, pp. 1546–1548, 2001. CrossRef | Google Scholar
    [98] J. Arbiol , B. Kalache , P. R. i. Cabarrocas , J. R. Morante , and A. F. i. Morral , “Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour–solid–solid mechanism,” Nanotechnology, vol. 18, no. 30, p. 305606, 2007. CrossRef | Google Scholar
    [104] Y. Cui and C. M. Lieber , “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science, vol. 291, no. 5505, pp. 851–853, 2001. CrossRef | Google Scholar
  • PubMed
  • [82] H. J. Fan , P. Werner , and M. Zacharias , “Semiconductor nanowires: from self‐organization to patterned growth,” Small, vol. 2, no. 6, pp.700–717, 2006. CrossRef | Google Scholar
  • PubMed
  • [85] C.-Y. Wen , et al., “Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires,” Phys. Rev. Lett., vol. 107, no. 2, p. 025503, 2011. CrossRef | Google Scholar
    [93] V. G. Dubrovskii , Nucleation theory and growth of nanostructures. Springer, 2014. CrossRef | Google Scholar
    [101] S. J. Kang , et al., “High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes,” Nat. Nanotechnol., vol. 2, no. 4, p. 230, 2007. CrossRef | Google Scholar
  • PubMed
  • [137] H. Zhao , S. Zhou , Z. Hasanali , and D. Wang , “Influence of pressure on silicon nanowire growth kinetics,” J. Phys. Chem. B, vol. 112, no. 15, pp. 5695–5698, 2008. Google Scholar
    [132] M. H. Huang , Y. Wu , H. Feick , N. Tran , E. Weber , and P. Yang , “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater., vol. 13, no. 2, pp. 113–116, 2001. CrossRef | Google Scholar
    [149] S. Iijima , “Helical Microtubules of Graphitic Carbon,” Nature, vol. 354, no. 6348, pp. 56–58, Nov 1991. CrossRef | Google Scholar
    [162] S. Roth , V. Krstic , and G. Rikken , “Quantum transport in carbon nanotubes,” Curr. Appl. Phys., vol. 2, no. 2, pp. 155–161, 2002. CrossRef | Google Scholar
    [165] A. Javey , J. Guo , Q. Wang , M. Lundstrom , and H. J. Dai , “Ballistic carbon nanotube field-effect transistors,” Nature, vol. 424, no. 6949, pp. 654–657, Aug 2003. CrossRef | Google Scholar
  • PubMed
  • [172] T. W. Ebbesen , P. M. Ajayan , H. Hiura , and K. Tanigaki , “Purification of nanotubes,” Nature, Letter vol. 367, no. 6463, pp. 519–519, Feb 1994. CrossRef | Google Scholar
    [178] A. Thess , et al., “Crystalline ropes of metallic carbon nanotubes,” Science, vol. 273, no. 5274, pp. 483–487, Jul 1996. CrossRef | Google Scholar
  • PubMed
  • [142] J. P. Hirth and G. M. Pound , Condensation and evaporation; nucleation and growth kinetics. Macmillan, 1963. Google Scholar
    [154] E. T. Thostenson , Z. F. Ren , and T. W. Chou , “Advances in the science and technology of carbon nanotubes and their composites: a review,” Compos. Sci. Technol., vol. 61, no. 13, pp. 1899–1912, 2001. CrossRef | Google Scholar
    [167] Y. W. Fan , B. R. Goldsmith , and P. G. Collins , “Identifying and counting point defects in carbon nanotubes,” Nat. Mater., vol. 4, no. 12, pp. 906–911, Dec 2005. CrossRef | Google Scholar
  • PubMed
  • 86[129] T. Mårtensson , et al., “Epitaxial III−V Nanowires on Silicon,” Nano Lett., vol. 4, no. 10, pp. 1987–1990, 2004. CrossRef | Google Scholar
    [175] M. C. McAlpine , H. Ahmad , D. Wang , and J. R. Heath , “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater., vol. 6, no. 5, p. 379, 2007. CrossRef | Google Scholar
  • PubMed
  • [136] S. Hofmann , et al., “Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth,” Nat. Mater., vol. 7, no. 5, p. 372, 2008. CrossRef | Google Scholar
  • PubMed
  • [141] J. Johansson , B. A. Wacaser , K. A. Dick , and W. Seifert , “Growth related aspects of epitaxial nanowires,” Nanotechnology, vol. 17, no. 11, p. S355, 2006. CrossRef | Google Scholar
    [166] C. Rutherglen and P. Burke , “Nanoelectromagnetics: circuit and electromagnetic properties of carbon nanotubes,” Small, vol. 5, no. 8, pp. 884–906, Apr 2009. CrossRef | Google Scholar
  • PubMed
  • [134] T. Kamins , X. Li , R. S. Williams , and X. Liu , “Growth and structure of chemically vapor deposited Ge nanowires on Si substrates,” Nano Lett., vol. 4, no. 3, pp. 503–506, 2004. CrossRef | Google Scholar
    [143] I. Markov , “Crystal growth for beginners: fundamentals of nucleation,” Crystal Growth and Epitaxy, p. 69, 1995. CrossRef | Google Scholar
    [159] S. Park , M. Vosguerichian , and Z. Bao , “A review of fabrication and applications of carbon nanotube film-based flexible electronics,” Nanoscale, vol. 5, no. 5, pp. 1727–1752, 2013. CrossRef | Google Scholar
  • PubMed
  • [181] P. C. Eklund , et al., “Large-scale production of single-walled carbon nanotubes using ultrafast pulses from a free electron laser,” Nano Lett., vol. 2, no. 6, pp. 561–566, Jun 2002. CrossRef | Google Scholar
    [184] M. Kumar and Y. Ando , “Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production,” J. Nanosci. Nanotechno., vol. 10, no. 6, pp. 3739–3758, Jun 2010. CrossRef | Google Scholar
  • PubMed
  • [130] R. Q. Zhang , Y. Lifshitz , and S. T. Lee , “Oxide‐assisted growth of semiconducting nanowires,” Adv. Mater., vol. 15, no. 7–8, pp. 635–640, 2003. CrossRef | Google Scholar
    [148] H. W. Kroto , J. R. Heath , S. C. Obrien , R. F. Curl , and R. E. Smalley , “C-60 – Buckminsterfullerene,” (in English), Nature, vol. 318, no. 6042, pp. 162–163, 1985. CrossRef | Google Scholar
    [139] L. Zambov , “Kinetics of homogeneous decomposition of silane,” J. Cryst. Growth, vol. 125, no. 1, pp. 164–174, 1992. CrossRef | Google Scholar
    [177] T. Guo , et al., “Uranium stabilization of C28 – a tetravalent fullerene,” Science, vol. 257, no. 5077, pp. 1661–1664, Sep 1992. CrossRef | Google Scholar
  • PubMed
  • [168] Y. Ando , X. Zhao , T. Sugai , and M. Kumar , “Growing carbon nanotubes,” Mater. Today., vol. 7, no. 10, pp. 22–29, 2004. CrossRef | Google Scholar
    [180] H. Ishii , et al., “Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures,” Nature, vol. 426, no. 6966, pp. 540–544, Dec 2003. CrossRef | Google Scholar
    [182] A. P. Bolshakov , et al., “A novel CW laser-powder method of carbon single-wall nanotubes production,” Diam. Relat. Mater., vol. 11, no. 3–6, pp. 927–930, Mar–Jun 2002. CrossRef | Google Scholar
    90[186] Z. F. Ren , et al., “Synthesis of large arrays of well-aligned carbon nanotubes on glass,” Science, vol. 282, no. 5391, pp. 1105–1107, Nov 1998. CrossRef | Google Scholar
    [187] M. Yudasaka , R. Kikuchi , T. Matsui , Y. Ohki , S. Yoshimura , and E. Ota , “Specific conditions for Ni catalyzed carbon nanotube growth by chemical-vapor-deposition,” Appl. Phys. Lett., vol. 67, no. 17, pp. 2477–2479, Oct 1995. CrossRef | Google Scholar
    [131] F. Kolb , et al., “Analysis of silicon nanowires grown by combining SiO evaporation with the VLS mechanism,” J. Electrochem. Soc., vol. 151, no. 7, pp. G472–G475, 2004. CrossRef | Google Scholar
    [133] A. I. Persson , M. W. Larsson , S. Stenström , B. J. Ohlsson , L. Samuelson , and L. R. Wallenberg , “Solid-phase diffusion mechanism for GaAs nanowire growth,” Nat. Mater., vol. 3, no. 10, pp. 677–681, 2004. CrossRef | Google Scholar
  • PubMed
  • [151] S. Frank , P. Poncharal , Z. L. Wang , and W. A. de Heer , “Carbon nanotube quantum resistors” (in English), Science, vol. 280, no. 5370, pp. 1744–1746, Jun 1998. CrossRef | Google Scholar
  • PubMed
  • [152] M. S. Dresselhaus , G. Dresselhaus , and P. Avouris , Carbon nanotubes: synthesis, structure, properties, and applications, Springer Books 2001. CrossRef | Google Scholar
    [170] D. T. Colbert , et al., “Growth and sintering of fullerene nanotubes,” Science, vol. 266, no. 5188, pp. 1218–1222, Nov 1994. CrossRef | Google Scholar
  • PubMed
  • [138] D. Pal , M. Kowar , A. Daw , and P. Roy , “Modelling of silicon epitaxy using silicon tetrachloride as the source,” Microelectr. J., vol. 26, no. 6, pp. 507–514, 1995. CrossRef | Google Scholar
    [156] R. Saito , G. Dresselhaus , and M. S. Dresselhaus , Physical properties of carbon nanotubes, London: Imperial College Press, 1998. CrossRef | Google Scholar
    [174] K. Anazawa , K. Shimotani , C. Manabe , H. Watanabe , and M. Shimizu , “High-purity carbon nanotubes synthesis method by an arc discharging in magnetic field,” Appl. Phys. Lett., vol. 81, no. 4, pp. 739–741, Jul 2002. CrossRef | Google Scholar
    [135] V. Dubrovskii , N. Sibirev , and G. Cirlin , “Kinetic model of the growth of nanodimensional whiskers by the vapor-liquid-crystal mechanism,” Tech. Phys. Lett., vol. 30, no. 8, pp. 682–686, 2004. CrossRef | Google Scholar
    [192] Q. Li , et al., “Sustained growth of ultralong carbon nanotube arrays for fiber spinning,” Adv. Mater., vol. 18, no. 23, pp. 3160–3163, Dec 4 2006. CrossRef | Google Scholar
    [150] B. Q. Wei , R. Vajtai , and P. M. Ajayan , “Reliability and current carrying capacity of carbon nanotubes,” (in English), Appl. Phys. Lett., vol. 79, no. 8, pp. 1172–1174, Aug 2001. CrossRef | Google Scholar
    [153] K. Hata , D. N. Futaba , K. Mizuno , T. Namai , M. Yumura , and S. Iijima , “Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes,” Science, vol. 306, no. 5700, pp. 1362–1364, Nov 19 2004. CrossRef | Google Scholar
  • PubMed
  • 88[158] M. S. Dresselhaus , A. Jorio , and R. Saito , “Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy,” in Annu. Rev. Conden. Ma. P, vol. 1, 2010, pp. 89–108. CrossRef | Google Scholar
    [176] S. Farhat , et al., “Diameter control of single-walled carbon nanotubes using argon-helium mixture gases,” J. Chem. Phys., vol. 115, no. 14, pp. 6752–6759, Oct 2001. CrossRef | Google Scholar
    [188] M. Yudasaka , R. Kikuchi , Y. Ohki , E. Ota , and S. Yoshimura , “Behavior of Ni in carbon nanotube nucleation,” Appl. Phys. Lett., vol. 70, no. 14, pp. 1817–1818, Apr 1997. CrossRef | Google Scholar
    [161] A. Bachtold , et al., “Aharonov-Bohm oscillations in carbon nanotubes,” Nature, vol. 397, no. 6721, pp. 673–675, 1999. CrossRef | Google Scholar
    [164] J. Kong , et al., “Quantum interference and ballistic transmission in nanotube electron waveguides,” Phys. Rev. Lett., vol. 87, no. 10, p. 4, Sep 2001, Art. no. 106801. CrossRef | Google Scholar
  • PubMed
  • [171] T. W. Ebbesen and P. M. Ajayan , “Large-scale synthesis of carbon nanotubes,” Nature vol. 358, pp. 220–222, 1992. CrossRef | Google Scholar
    [140] V. Dubrovskii , N. Sibirev , G. Cirlin , J. Harmand , and V. Ustinov , “Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during molecular beam epitaxy,” Phys. Rev. E, vol. 73, no. 2, p. 021603, 2006. CrossRef | Google Scholar
  • PubMed
  • 87[144] B. A. Wacaser , K. A. Dick , J. Johansson , M. T. Borgström , K. Deppert , and L. Samuelson , “Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires,” Adv. Mater., vol. 21, no. 2, pp. 153–165, 2009. CrossRef | Google Scholar
    [145] D. Shakthivel , S. Rathkanthiwar , and S. Raghavan , “Si nanowire growth on sapphire: Classical incubation, reverse reaction, and steady state supersaturation,” J. Appl. Phys., vol. 117, no. 16, p. 164302, 2015. CrossRef | Google Scholar
    [155] M. S. Dresselhaus , G. Dresselhaus , R. Saito , and A. Jorio , “Raman spectroscopy of carbon nanotubes,” Phys. Rep., vol. 409, no. 2, pp. 47–99, Mar 2005. CrossRef | Google Scholar
    [157] V. N. Popov , “Carbon nanotubes: properties and application,” Mater. Sci. Eng. Rep., vol. 43, no. 3, pp. 61–102, Jan 15 2004. CrossRef | Google Scholar
    [160] S. J. Tans , et al., “Individual single-wall carbon nanotubes as quantum wires,” Nature, vol. 386, no. 6624, pp. 474–477, Apr 1997. CrossRef | Google Scholar
    89[173] J.-P. Tessonnier and D. S. Su , “Recent progress on the growth mechanism of carbon nanotubes: a review,” Chemsuschem, vol. 4, no. 7, pp. 824–847, 2011. CrossRef | Google Scholar
  • PubMed
  • [185] Z. F. Ren , et al., “Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot,” Appl. Phys. Lett., vol. 75, no. 8, pp. 1086–1088, Aug 1999. CrossRef | Google Scholar
    [191] S. B. Sinnott , et al., “Model of carbon nanotube growth through chemical vapor deposition,” Chem. Phys. Lett., vol. 315, no. 1–2, pp. 25–30, Dec 1999. CrossRef | Google Scholar
    [169] Y. Ando , “Carbon nanotube: the inside story,” J. Nanosci. Nanotechno., vol. 10, no. 6, pp. 3726–3738, Jun 2010. CrossRef | Google Scholar
  • PubMed
  • [179] S. Bandow , A. M. Rao , K. A. Williams , A. Thess , R. E. Smalley , and P. C. Eklund , “Purification of single-wall carbon nanotubes by microfiltration,” J. Phys. Chem. B, Letter vol. 101, no. 44, pp. 8839–8842, Oct 1997. CrossRef | Google Scholar
    [183] M. Endo , K. Takeuchi , S. Igarashi , K. Kobori , M. Shiraishi , and H. W. Kroto , “The production and structure of pyrolytic carbon nanotubes (PNTs),” J. Phys. Chem. Solids., vol. 54, no. 12, pp. 1841–1848, Dec 1993. CrossRef | Google Scholar
    [189] C.-M. Seah , S.-P. Chai , and A. R. Mohamed , “Synthesis of aligned carbon nanotubes,” Carbon, vol. 49, no. 14, pp. 4613–4635, Nov 2011. CrossRef | Google Scholar
    [146] B. Kalache , P. R. i Cabarrocas , and A. F. i Morral , “Observation of incubation times in the nucleation of silicon nanowires obtained by the vapor–liquid–solid method,” Jpn. J. Appl. Phys., vol. 45, no. 2L, p. L190, 2006. CrossRef | Google Scholar
    [147] F. Kreupl , et al., “Carbon nanotubes in interconnect applications,” Microelectron. Eng., vol. 64, no. 1–4, pp. 399–408, Oct 2002. CrossRef | Google Scholar
    [163] R. Maruyama , Y. W. Nam , J. H. Han , and M. S. Strano , “Well-defined single-walled carbon nanotube fibers as quantum wires: Ballistic conduction over micrometer-length scales,” Curr. Appl. Phys., vol. 11, no. 6, pp. 1414–1418, Nov 2011. CrossRef | Google Scholar
    [190] M. A. Azam , N. S. A. Manaf , E. Talib , and M. S. A. Bistamam , “Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: a review,” Ionics, vol. 19, no. 11, pp. 1455–1476, 2013. CrossRef | Google Scholar
    [195] A. M. Cassell , J. A. Raymakers , J. Kong , and H. J. Dai , “Large scale CVD synthesis of single-walled carbon nanotubes,” J. Phys. Chem. B, vol. 103, no. 31, pp. 6484–6492, Aug 1999. CrossRef | Google Scholar
    92[212] R. Sen , A. Govindaraj , and C. N. R. Rao , “Carbon nanotubes by the metallocene route,” Chem. Phys. Lett., vol. 267, no. 3–4, pp. 276–280, Mar 21 1997. CrossRef | Google Scholar
    [220] J. D. Carey , L. L. Ong , and S. R. P. Silva , “Formation of low-temperature self-organized nanoscale nickel metal islands,” Nanotechnology, vol. 14, no. 11, pp. 1223–1227, Nov 2003. CrossRef | Google Scholar
    [214] Q. W. Li , H. Yan , J. Zhang , and Z. F. Liu , “Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition,” Carbon, vol. 42, no. 4, pp. 829–835, 2004. CrossRef | Google Scholar
    [216] R. Seidel , G. S. Duesberg , E. Unger , A. P. Graham , M. Liebau , and F. Kreupl , “Chemical vapor deposition growth of single-walled carbon nanotubes at 600 degrees C and a simple growth model,” J. Phys. Chem. B, vol. 108, no. 6, pp. 1888–1893, Feb 12 2004. CrossRef | Google Scholar
    94[237] T. Takeshi , J. Hehua , M. Yasumitsu , and K. Hiromichi , “High-yield separation of metallic and semiconducting single-wall carbon nanotubes by agarose gel electrophoresis,” Appl. Phys. Express, vol. 1, no. 11, p. 114001, 2008. Google Scholar
    [203] M. Su , B. Zheng , and J. Liu , “A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity,” Chem. Phys. Lett., vol. 322, no. 5, pp. 321–326, May 2000. CrossRef | Google Scholar
    [193] P. B. Amama , et al., “Role of water in super growth of single-walled carbon nanotube carpets,” Nano Lett., vol. 9, no. 1, pp. 44–49, 2009. CrossRef | Google Scholar
  • PubMed
  • [233] P. G. Collins , M. S. Arnold , and P. Avouris , “Engineering carbon nanotubes and nanotube circuits using electrical breakdown,” Science, vol. 292, no. 5517, p. 706, 2001. CrossRef | Google Scholar
  • PubMed
  • [246] Z. W. Pan , Z. R. Dai , and Z. L. Wang , “Nanobelts of semiconducting oxides,” Science, vol. 291, no. 5510, p. 1947, 2001. CrossRef | Google Scholar
  • PubMed
  • [222] H. Ago , K. Nakamura , N. Uehara , and M. Tsuji , “Roles of metal-support interaction in growth of single- and double-walled carbon nanotubes studied with diameter-controlled iron particles supported on MgO,” J. Phys. Chem. B, vol. 108, no. 49, pp. 18908–18915, Dec 9 2004. CrossRef | Google Scholar
    [227] M. H. van der Veen , et al., “Electrical characterization of CNT contacts with Cu Damascene top contact,” Microelectron. Eng., vol. 106, pp. 106–111, Jun 2013. CrossRef | Google Scholar
    [242] H. Liu , D. Nishide , T. Tanaka , and H. Kataura , “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun., vol. 2, p. 309, 2011. CrossRef | Google Scholar
  • PubMed
  • [207] V. I. Merkulov , D. H. Lowndes , Y. Y. Wei , G. Eres , and E. Voelkl , “Patterned growth of individual and multiple vertically aligned carbon nanofibers,” Appl. Phys. Lett., vol. 76, no. 24, pp. 3555–3557, Jun 2000. CrossRef | Google Scholar
    [194] Q. Wen , et al., “Growing 20 cm long DWNTs/TWNTs at a rapid growth rate of 80–90 um/s,” Chem. Mater., vol. 22, no. 4, pp. 1294–1296, 2010. CrossRef | Google Scholar
    [218] K. Y. Lee , et al., “Vertically aligned growth of carbon nanotubes with long length and high density,” J. Vac. Sci. Technol. B., vol. 23, no. 4, pp. 1450–1453, Jul–Aug 2005. CrossRef | Google Scholar
    [223] Y. J. Jung , B. Q. Wei , R. Vajtai , and P. M. Ajayan , “Mechanism of selective growth of carbon nanotubes on SiO2/Si patterns,” Nano Lett., vol. 3, no. 4, pp. 561–564, Apr 2003. CrossRef | Google Scholar
    93[224] S. Esconjauregui , et al., “Growth of ultrahigh density vertically aligned carbon nanotube forests for interconnects,” ACS Nano, vol. 4, no. 12, pp. 7431–7436, Dec 2010. CrossRef | Google Scholar
  • PubMed
  • [229] H. Zhang , B. Wu , W. Hu , and Y. Liu , “Separation and/or selective enrichment of single-walled carbon nanotubes based on their electronic properties,” Chem. Soc. Rev., vol. 40, no. 3, pp. 1324–1336, 2011. CrossRef | Google Scholar
  • PubMed
  • [236] X. Tu , S. Manohar , A. Jagota , and M. Zheng , “DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes,” Nature, vol. 460, p. 250, 2009. CrossRef | Google Scholar
  • PubMed
  • [240] C. A. Silvera-Batista , D. C. Scott , S. M. McLeod , and K. J. Ziegler , “A mechanistic study of the selective retention of SDS-suspended single-wall carbon nanotubes on agarose gels,” J. Phys. Chem. B, vol. 115, no. 19, pp. 9361–9369, 2011. Google Scholar
    [247] W. I. Park , G. C. Yi , M. Y. Kim , and S. J. Pennycook , “ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy,” Adv. Mater., vol. 14, no. 24, pp. 1841–1843, Dec 2002. CrossRef | Google Scholar
    [202] G. Y. Chen , B. Jensen , V. Stolojan , and S. R. P. Silva , “Growth of carbon nanotubes at temperatures compatible with integrated circuit technologies,” Carbon, vol. 49, no. 1, pp. 280–285, Jan 2011. CrossRef | Google Scholar
    [206] C. Bower , W. Zhu , S. H. Jin , and O. Zhou , “Plasma-induced alignment of carbon nanotubes,” Appl. Phys. Lett., vol. 77, no. 6, pp. 830–832, Aug 2000. CrossRef | Google Scholar
    [215] D. Yuan , L. Ding , H. Chu , Y. Feng , T. P. McNicholas , and J. Liu , “Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts,” Nano Lett., vol. 8, no. 8, pp. 2576–2579, Aug 2008. CrossRef | Google Scholar
  • PubMed
  • [221] B. C. Bayer , et al., “Co-catalytic solid-state reduction applied to carbon nanotube growth,” J. Phys. Chem. B, vol. 116, no. 1, pp. 1107–1113, Jan 12 2012. Google Scholar
    [225] D. Yokoyama , et al., “Low temperature grown carbon nanotube interconnects using inner shells by chemical mechanical polishing,” Appl. Phys. Lett., vol. 91, no. 26, p. 263101, Dec 24 2007. CrossRef | Google Scholar
    [252] L. Vayssieres , K. Keis , S.-E. Lindquist , and A. Hagfeldt , “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO,” J. Phys. Chem. B, vol. 105, no. 17, pp. 3350–3352, 2001. CrossRef | Google Scholar
    [253] J. Nayak , S. N. Sahu , J. Kasuya , and S. Nozaki , “Effect of substrate on the structure and optical properties of ZnO nanorods,” J. Phys. D. Appl. Phys., vol. 41, no. 11, p. 6, Jun 2008. CrossRef | Google Scholar
    [241] M. S. Arnold , A. A. Green , J. F. Hulvat , S. I. Stupp , and M. C. Hersam , “Sorting carbon nanotubes by electronic structure using density differentiation,” Nat. Nanotechnol., vol. 1, p. 60, 2006. CrossRef | Google Scholar
  • PubMed
  • [200] M. Ahmad , et al., “High quality carbon nanotubes on conductive substrates grown at low temperatures,” Adv. Funct. Mater, vol. 25, no. 28, pp. 4419–4429, 2015. CrossRef | Google Scholar
    [251] M. A. Verges , A. Mifsud , and C. J. Serna , “Formation of rod-like zinc oxide microcrystals in homogeneous solutions,” J. Chem. Soc. Faraday. T., vol. 86, no. 6, pp. 959–963, 1990. CrossRef | Google Scholar
    [211] S. Maruyama , R. Kojima , Y. Miyauchi , S. Chiashi , and M. Kohno , “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol,” Chem. Phys. Lett., vol. 360, no. 3–4, pp. 229–234, Jul 10 2002. CrossRef | Google Scholar
    [201] M. Ahmad , “Carbon nanotube based integrated circuit interconnects,” University of Surrey, Faculty of Engineering and Physical Sciences, Department of Electronic Engineering Thesis (Ph.D.) – University of Surrey, 2013. Google Scholar
    [210] M. Chhowalla , et al., “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,” J. Appl. Phys., vol. 90, no. 10, pp. 5308–5317, Nov 15 2001. CrossRef | Google Scholar
    [231] R. Krupke , F. Hennrich , H. v. Löhneysen , and M. M. Kappes , “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science, vol. 301, no. 5631, p. 344, 2003. CrossRef | Google Scholar
  • PubMed
  • [232] N. Mureau , E. Mendoza , S. R. P. Silva , K. F. Hoettges , and M. P. Hughes , “In situ and real time determination of metallic and semiconducting single-walled carbon nanotubes in suspension via dielectrophoresis,” Appl. Phys. Lett, vol. 88, no. 24, p. 243109, 2006. CrossRef | Google Scholar
    [244] Z. L. Wang , “ZnO nanowire and nanobelt platform for nanotechnology,” Mater. Sci. Eng. Rep., vol. 64, no. 3, pp. 33–71, 2009. CrossRef | Google Scholar
    [198] J. Kong , H. T. Soh , A. M. Cassell , C. F. Quate , and H. J. Dai , “Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers,” Nature, vol. 395, no. 6705, pp. 878–881, Oct 1998. CrossRef | Google Scholar
    [255] S. Xu , et al., “Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst,” J. Am. Chem. Soc., vol. 130, no. 45, pp. 14958–14959, 2008. CrossRef | Google Scholar
  • PubMed
  • [199] M. Ahmad , J. V. Anguita , V. Stolojan , J. D. Carey , and S. R. P. Silva , “Efficient coupling of optical energy for rapid catalyzed nanomaterial growth: high-quality carbon nanotube synthesis at low substrate 91temperatures,” ACS Appl. Mater. Inter, vol. 5, no. 9, pp. 3861–3866, May 8 2013. CrossRef | Google Scholar
    [234] M. Yudasaka , M. Zhang , and S. Iijima , “Diameter-selective removal of single-wall carbon nanotubes through light-assisted oxidation,” Chem. Phys. Lett., vol. 374, no. 1, pp. 132–136, 2003. CrossRef | Google Scholar
    [235] M. Zheng , et al., “Structure-based carbon nanotube sorting by sequence-dependent DNA assembly,” Science, vol. 302, no. 5650, p. 1545, 2003. CrossRef | Google Scholar
  • PubMed
  • [205] S. Maruyama , Y. Miyauchi , Y. Murakami , and S. Chiashi , “Optical characterization of single-walled carbon nanotubes synthesized by catalytic decomposition of alcohol,” New. J. Phys., vol. 5, p. 12, Oct 2003. CrossRef | Google Scholar
    [226] H. Okuno , et al., “CNT integration on different materials suitable for VLSI interconnects,” C. R. Phys., vol. 11, no. 5–6, pp. 381–388, Jun–Jul 2010. CrossRef | Google Scholar
    [243] S. Xu and Z. L. Wang , “One-dimensional ZnO nanostructures: solution growth and functional properties,” Nano. Res., vol. 4, no. 11, pp. 1013–1098, November 01 2011. CrossRef | Google Scholar
    [248] Y. W. Heo , et al., “Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy,” Appl. Phys. Lett., vol. 81, no. 16, pp. 3046–3048, 2002. CrossRef | Google Scholar
    95[250] R. A. Laudise and A. A. Ballman , “Hydrothermal synthesis of zinc oxide and zinc sulfide,” J. Phys. Chem., vol. 64, no. 5, pp. 688–691, 1960. CrossRef | Google Scholar
    [196] H. J. Dai , et al., “Controlled chemical routes to nanotube architectures, physics, and devices,” (in English), J. Phys. Chem. B, vol. 103, no. 51, pp. 11246–11255, Dec 1999. CrossRef | Google Scholar
    [219] G. D. Nessim , et al., “Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment,” Nano Lett., vol. 8, no. 11, pp. 3587–3593, Nov 2008. CrossRef | Google Scholar
  • PubMed
  • [238] T. Tanaka , et al., “Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes,” Nano Lett., vol. 9, no. 4, pp. 1497–1500, 2009. CrossRef | Google Scholar
  • PubMed
  • [245] S. Das and S. Ghosh , “Fabrication of different morphologies of ZnO superstructures in presence of synthesized ethylammonium nitrate (EAN) ionic liquid: synthesis, characterization and analysis,” Dalton. T., vol. 42, no. 5, pp. 1645–1656, 2013. CrossRef | Google Scholar
  • PubMed
  • [197] J. Kong , A. M. Cassell , and H. J. Dai , “Chemical vapor deposition of methane for single-walled carbon nanotubes,” Chem. Phys. Lett., vol. 292, no. 4–6, pp. 567–574, Aug 1998. CrossRef | Google Scholar
    [204] R. Alexandrescu , et al., “Synthesis of carbon nanotubes by CO2-laser-assisted chemical vapour deposition,” Infrared. Phys. Techn., vol. 44, no. 1, pp. 43–50, Feb 2003. CrossRef | Google Scholar
    [209] J. V. Anguita , D. C. Cox , M. Ahmad , Y. Y. Tan , J. Allam , and S. R. P. Silva , “Highly transmissive carbon nanotube forests grown at low substrate temperature,” Adv. Funct. Mater., 2013. CrossRef | Google Scholar
    [213] M. Kumar and Y. Ando , “A simple method of producing aligned carbon nanotubes from an unconventional precursor – Camphor,” Chem. Phys. Lett., vol. 374, no. 5–6, pp. 521–526, Jun 18 2003. CrossRef | Google Scholar
    [217] E. R. Meshot , D. L. Plata , S. Tawfick , Y. Zhang , E. A. Verploegen , and A. J. Hart , “Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst,” ACS Nano, vol. 3, no. 9, pp. 2477–2486, Sep 2009. CrossRef | Google Scholar
  • PubMed
  • [230] A. R. Harutyunyan , et al., “Preferential growth of single-walled carbon nanotubes with metallic conductivity,” Science, vol. 326, no. 5949, p. 116, 2009. CrossRef | Google Scholar
  • PubMed
  • [239] W. H. Duan , Q. Wang , and F. Collins , “Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective,” Chem. Sci., vol. 2, no. 7, pp. 1407–1413, 2011. CrossRef | Google Scholar
    [256] K. Govender , D. S. Boyle , P. B. Kenway , and P. O’Brien , “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution,” J. Mater. Chem., vol. 14, no. 16, pp. 2575–2591, 2004. CrossRef | Google Scholar
    [208] K. B. K. Teo , et al., “Uniform patterned growth of carbon nanotubes without surface carbon,” Appl. Phys. Lett, vol. 79, no. 10, pp. 1534–1536, Sep 2001. CrossRef | Google Scholar
    [228] J. Li , et al., “Bottom-up approach for carbon nanotube interconnects,” Appl. Phys. Lett, vol. 82, no. 15, pp. 2491–2493, Apr 2003. CrossRef | Google Scholar
    [249] J. I. Hong , J. Bae , Z. L. Wang , and R. L. Snyder , “Room-temperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays,” Nanotechnology, vol. 20, no. 8, p. 5, Feb 2009. CrossRef | Google Scholar
  • PubMed
  • [254] P. C. Chang and J. G. Lu , “ZnO nanowire field-effect transistors,” IEEE. T. Electron. Dev., vol. 55, no. 11, pp. 2977–2987, Nov 2008. CrossRef | Google Scholar
    [266] M. Law , L. E. Greene , J. C. Johnson , R. Saykally , and P. Yang , “Nanowire dye-sensitized solar cells,” Nat. Mater., vol. 4, p. 455, 2005. CrossRef | Google Scholar
  • PubMed
  • [260] L. E. Greene , et al., “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Edit., vol. 42, no. 26, pp. 3031–3034, 2003. CrossRef | Google Scholar
  • PubMed
  • [284] H. Xu , Z. Zheng , L. Z. Zhang , H. L. Zhang , and F. Deng , “Hierarchical chlorine-doped rutile TiO2 spherical clusters of nanorods: large-scale synthesis and high photocatalytic activity,” J. Solid State Chem., vol. 181, no. 9, pp. 2516–2522, Sep 2008. CrossRef | Google Scholar
    Organic and Amorphous-Metal-Oxide Flexible Analogue Electronics Vincenzo Pecunia et al. CrossRef | Google Scholar
    [274] Y. Sun , L. Wang , X. Yu , and K. Chen , “Facile synthesis of flower-like 3D ZnO superstructures via solution route,” Cryst. Eng. Comm., vol. 14, no.9, pp.3199–3204, 2012. CrossRef | Google Scholar
    97[276] M. Wanit , et al., “ZnO nano-tree growth study for high efficiency solar cell,” Energy Procedia, vol.14, pp.1093–1098, 2012. CrossRef | Google Scholar
    [279] J. H. Tian , et al., “Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires,” Nanotechnology, vol. 22, no.24, p. 9, May 2011, Art. no. 245601. CrossRef | Google Scholar
  • PubMed
  • [280] J. H. Lee , “Gas sensors using hierarchical and hollow oxide nanostructures: overview,” Sens. Actuator B-Chem., vol. 140, no. 1, pp. 319–336, Jun 2009. CrossRef | Google Scholar
    [258] A. Sugunan , H. C. Warad , M. Boman , and J. Dutta , “Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine,” J. Sol-Gel. Sci. Techn, vol. 39, no. 1, pp. 49–56, July 01 2006. CrossRef | Google Scholar
    [291] P. X. Gao and Z. L. Wang , “Nanopropeller arrays of zinc oxide,” Appl. Phys. Lett., vol. 84, no. 15, pp. 2883–2885, 2004. CrossRef | Google Scholar
    [259] S. Xu , C. Lao , B. Weintraub , and Z. L. Wang , “Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces,” J. Mater. Res., vol. 23, no. 8, pp. 2072–2077, Aug 2008. CrossRef | Google Scholar
    [265] T. Pauporté , D. Lincot , B. Viana , and F. Pellé , “Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition,” Appl. Phys. Lett, vol. 89, no. 23, p. 233112, 2006. CrossRef | Google Scholar
    [269] Z. R. Tian , J. A. Voigt , J. Liu , B. McKenzie , and M. J. McDermott , “Biomimetic arrays of oriented helical ZnO nanorods and columns,” J. Am. Chem. Soc., vol. 124, no. 44, pp. 12954–12955, 2002. CrossRef | Google Scholar
  • PubMed
  • [275] S. H. Ko , et al., “Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell,” Nano Lett., vol. 11, no.2, pp.666–671, 2011. CrossRef | Google Scholar
  • PubMed
  • Bioresorbable Materials and Their Application in Electronics Xian Huang CrossRef | Google Scholar
    [257] M. N. R. Ashfold , R. P. Doherty , N. G. Ndifor-Angwafor , D. J. Riley , and Y. Sun , “The kinetics of the hydrothermal growth of ZnO nanostructures,” Thin Solid Films, vol. 515, no. 24, pp. 8679–8683, Oct 2007. CrossRef | Google Scholar
    [263] T. Ma , M. Guo , M. Zhang , Y. J. Zhang , and X. D. Wang , “Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays,” Nanotechnology, vol. 18, no. 3, p. 7, Jan 2007. CrossRef | Google Scholar
  • PubMed
  • [264] H. Q. Le , S. J. Chua , K. P. Loh , E. A. Fitzgerald , and Y. W. Koh , “Synthesis and optical properties of well aligned ZnO nanorods on GaN by hydrothermal synthesis,” Nanotechnology, vol. 17, no. 2, pp. 483–488, Jan 2006. CrossRef | Google Scholar
    [277] T. Zhang , W. Dong , M. Keeter-Brewer , S. Konar , R. N. Njabon , and Z. R. Tian , “Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites,” J. Am. Chem. Soc., vol. 128, no. 33, pp. 10960–10968, 2006. CrossRef | Google Scholar
  • PubMed
  • [278] M. R. Alenezi , “Nanostructured zinc oxide sensors,” Thesis (Ph.D.) – University of Surrey, 2014. Google Scholar
    [283] L. Zhang , W. Wang , Z. Chen , L. Zhou , H. Xu , and W. Zhu , “Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts,” J. Mater. Chem., vol. 17, no. 24, pp. 2526–2532, 2007. CrossRef | Google Scholar
    [281] T. P. Chou , Q. F. Zhang , G. E. Fryxell , and G. Z. Cao , “Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency,” Adv. Mater., vol. 19, no. 18, Sep 2007. CrossRef | Google Scholar
    [289] J. G. Wen , J. Y. Lao , D. Z. Wang , T. M. Kyaw , Y. L. Foo , and Z. F. Ren , “Self-assembly of semiconducting oxide nanowires, nanorods, and nanoribbons,” Chem. Phys. Lett., vol. 372, no. 5, pp. 717–722, 2003. CrossRef | Google Scholar
    Large-Area Electronics Based on Micro/Nanostructures and the Manufacturing Technologies Carlos García Núñez et al. Google Scholar
    [261] H.-H. Park , et al., “Position-controlled hydrothermal growth of ZnO nanorods on arbitrary substrates with a patterned seed layer via ultraviolet-assisted nanoimprint lithography,” Cryst. Eng. Comm., vol. 15, no. 17, pp. 3463–3469, 2013. CrossRef | Google Scholar
    1D Semiconducting Nanostructures for Flexible and Large-Area Electronics Dhayalan Shakthivel et al. Google Scholar
    [288] Y. Zhang , J. Xu , Q. Xiang , H. Li , Q. Pan , and P. Xu , “Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas 98sensor properties,” J. Phys. Chem. B, vol. 113, no. 9, pp. 3430–3435, 2009. Google Scholar
    [290] B. Liu and H. C. Zeng , “Hollow ZnO microspheres with complex nanobuilding units,” Chem. Mater., vol. 19, no. 24, pp. 5824–5826, 2007. CrossRef | Google Scholar
    A Flexible Multi-Functional Touch Panel for Multi-Dimensional Sensing in Interactive Displays Shuo Gao and Arokia Nathan CrossRef | Google Scholar
    [271] Z. R. Tian , et al., “Complex and oriented ZnO nanostructures,” Nat. Mater., vol. 2, p. 821, 2003. CrossRef | Google Scholar
  • PubMed
  • [272] Y. H. Ni , X. W. Wei , X. Ma , and J. M. Hong , “CTAB assisted one-pot hydrothermal synthesis of columnar hexagonal-shaped ZnO crystals,” J. Cryst. Growth, vol. 283, no. 1–2, pp. 48–56, Sep 2005. CrossRef | Google Scholar
    [262] J. Liu , J. C. She , S. Z. Deng , J. Chen , and N. S. Xu , “Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission 96characteristics,” J. Phys. Chem. B, vol. 112, no. 31, pp. 11685–11690, Aug 2008. Google Scholar
    [273] Y. X. Wang , X. Y. Fan , and J. Sun , “Hydrothermal synthesis of phosphate-mediated ZnO nanosheets,” Mater. Lett., vol. 63, no. 3–4, pp. 350–352, 2009. Google Scholar
    [292] A. J. Baca , et al., “Semiconductor wires and ribbons for high‐performance flexible electronics,” Angew. Chem. Int. Edit., vol. 47, no. 30, pp.5524–5542, 2008. CrossRef | Google Scholar
  • PubMed
  • [282] A. M. Cao , et al., “Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors,” J. Phys. Chem. B, vol. 110, no. 32, pp. 15858–15863, Aug 2006. CrossRef | Google Scholar
  • PubMed
  • [285] S. Sun , W. Wang , H. Xu , L. Zhou , M. Shang , and L. Zhang , “Bi5FeTi3O15 hierarchical microflowers: hydrothermal synthesis, growth mechanism, and associated visible-light-driven photocatalysis,” J. Phys. Chem. B, vol. 112, no. 46, pp. 17835–17843, 2008. Google Scholar
    [270] L. Xu , Y. Guo , Q. Liao , J. Zhang , and D. Xu , “Morphological control of ZnO nanostructures by electrodeposition,” J. Phys. Chem. B, vol. 109, no. 28, pp. 13519–13522, 2005. CrossRef | Google Scholar
  • PubMed
  • [267] C. Xu , P. Shin , L. Cao , and D. Gao , “Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells,” J. Phys. Chem. B, vol. 114, no. 1, pp. 125–129, 2010. Google Scholar
    [286] Y. Qin , X. Wang , and Z. L. Wang , “Microfibre–nanowire hybrid structure for energy scavenging,” Nature, vol. 451, p. 809, 2008. CrossRef | Google Scholar
  • PubMed
  • [287] H. Yang , L. Hao , N. Zhao , C. Du , and Y. Wang , “Hierarchical porous hydroxyapatite microsphere as drug delivery carrier,” Cryst. Eng. Comm., vol. 15, no. 29, pp. 5760–5763, 2013. CrossRef | Google Scholar
    [268] Y. Zhou , W. B. Wu , G. D. Hu , H. T. Wu , and S. G. Cui , “Hydrothermal synthesis of ZnO nanorod arrays with the addition of polyethyleneimine,” Mater. Res. Bull., vol. 43, no. 8–9, pp. 2113–2118, 2008. CrossRef | Google Scholar

    Metrics

    Altmetric attention score

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Abstract views

    Total abstract views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed