Skip to main content
×
×
Home

Investigation of serum levels of sortilin in response to antidepressant treatment

  • Henriette Nørmølle Buttenschøn (a1) (a2), Marit Nielsen (a1), Simon Glerup (a3) and Ole Mors (a2) (a4)
Abstract
Background

The identification of biomarkers for depression is of great clinical relevance as the diagnosis is currently subjective. Recent research points towards sortilin as a potential biomarker for depression, and the aim of the current study was to investigate the serum sortilin level in response to antidepressant treatment.

Methods

The study included 56 depressed individuals of which 41 responded to treatment. Depression scores and serum levels of sortilin were measured at baseline and after 12 weeks of antidepressant treatment. Statistical analyses were performed using Stata 13.

Results

The depression score and response to treatment were not predicted by the sortilin level. Likewise, we observed no significant change in serum sortilin levels following 12 weeks of antidepressant treatment. Furthermore, no association between the serum sortilin level and depression score was observed.

Conclusion

The results do not point towards sortilin as a state-dependent biomarker.

Copyright
Corresponding author
*Henriette N. Buttenschøn, Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark. Tel: +45 7847 1163; Fax: +45 7847 1108; E-mail: hnbt@clin.au.dk
References
Hide All
1. Sullivan, PF, Neale, MC, Kendler, KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000;157:15521562.
2. Pedersen, CB, Mors, O, Bertelsen, A et al. A comprehensive nationwide study of the incidence rate and lifetime risk for treated mental disorders. JAMA Psychiatry 2014;71:573581.
3. Bilello, JA. Seeking an objective diagnosis of depression. Biomark Med 2016;10:861875.
4. Molendijk, ML, Spinhoven, P, Polak, M et al. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol Psychiatry 2014;19:791800.
5. Teng, HK, Teng, KK, Lee, R et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 2005;25:54555463.
6. Vaegter, CB, Jansen, P, Fjorback, AW et al. Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling. Nat Neurosci 2011;14:5461.
7. Glerup, S, Nykjaer, A, Vaegter, CB. Sortilins in neurotrophic factor signaling. Handb Exp Pharmacol 2014;220:165189.
8. Alemany, S, Ribases, M, Vilor-Tejedor, N et al. New suggestive genetic loci and biological pathways for attention function in adult attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2015;168:459470.
9. Baum, AE, Akula, N, Cabanero, M et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2008;13:197207.
10. Hyde, CL, Nagle, MW, Tian, C et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat Genet 2016;48:10311036.
11. Lambert, JC, Ibrahim-Verbaas, CA, Harold, D et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 2013;45:14521458.
12. Buttenschon, HN, Demontis, D, Kaas, M et al. Increased serum levels of sortilin are associated with depression and correlated with BDNF and VEGF. Transl Psychiatry 2015;5:e677.
13. Zhou, L, Xiong, J, Lim, Y et al. Upregulation of blood proBDNF and its receptors in major depression. J Affect Disord 2013;150:776784.
14. Stelzhammer, V, Guest, PC, Rothermundt, M et al. Electroconvulsive therapy exerts mainly acute molecular changes in serum of major depressive disorder patients. Eur Neuropsychopharmacol 2013;23:11991207.
15. Belzeaux, R, Formisano-Treziny, C, Loundou, A et al. Clinical variations modulate patterns of gene expression and define blood biomarkers in major depression. J Psychiatr Res 2010;44:12051213.
16. Uher, R, Maier, W, Hauser, J et al. Differential efficacy of escitalopram and nortriptyline on dimensional measures of depression. Br J Psychiatry 2009;194:252259.
17. Montgomery, SA, Asberg, M. A new depression scale designed to be sensitive to change. Br J Psychiatry 1979;134:382389.
18. World Health Organization. Diagnosis and clinical measurement in psychiatry. A reference manual for SCAN. 1998.
19. Devader, C, Roulot, M, Moreno, S et al. Serum sortilin-derived propeptides concentrations are decreased in major depressive disorder patients. J Affect Disord 2017;208:443447.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Acta Neuropsychiatrica
  • ISSN: 0924-2708
  • EISSN: 1601-5215
  • URL: /core/journals/acta-neuropsychiatrica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Buttenschøn supplementary material
Supplementary Figure

 Unknown (3.4 MB)
3.4 MB

Metrics

Full text views

Total number of HTML views: 6
Total number of PDF views: 80 *
Loading metrics...

Abstract views

Total abstract views: 342 *
Loading metrics...

* Views captured on Cambridge Core between 8th May 2017 - 18th September 2018. This data will be updated every 24 hours.