Skip to main content
×
Home
    • Aa
    • Aa

Symplectic integrators for Hamiltonian problems: an overview

  • J. M. Sanz-Serna (a1)
Abstract

In the sciences, situations where dissipation is not significant may invariably be modelled by Hamiltonian systems of ordinary, or partial, differential equations. Symplectic integrators are numerical methods specifically aimed at advancing in time the solution of Hamiltonian systems. Roughly speaking, ‘symplecticness’ is a characteristic property possessed by the solutions of Hamiltonian problems. A numerical method is called symplectic if, when applied to Hamiltonian problems, it generates numerical solutions which inherit the property of symplecticness.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

K. Aizu (1985), ‘Canonical transformation invariance and linear multistep formula for integration of Hamiltonian systems’, J. Comput. Phys. 58, 270274.

V.I. Arnold and S.P. Novikov (1990), Dynamical Systems IV, Springer, Berlin.

K. Burrage and J.C. Butcher (1979), ‘Stability criteria for implicit Runge-Kutta methods’, SIAM J. Numer. Anal. 16, 4657.

J.C. Butcher (1976), ‘On the implementation of implicit Runge–Kutta methods’, BIT 16, 237240.

J. Candy and W. Rozmus (1991), ‘A symplectic integration algorithm for separable Hamiltonian functions’, J. Comput. Phys. 92, 230256.

P.J. Channell and C. Scovel (1990), ‘Symplectic integration of Hamiltonian systems’, Nonlinearity 3, 231259.

G.J. Cooper (1987), ‘Stability of Runge–Kutta methods for trajectory problems’, IMA J. Numer. Anal. 7, 113.

G.J. Cooper and R. Vignesvaran (1990), ‘A scheme for the implementation of implicit Runge-Kutta methods’, Computing 45, 321332.

M. Crouzeix (1979), ‘Sur la B-stabilité des méthodes de Runge–Kutta’, Numer. Math. 32, 7582.

J.R. Dormand , M.E.A. El-Mikkawy and P.J. Prince (1987), ‘Families of Runge–Kutta–Nyström formulae’, IMA J. Numer. Anal. 7, 235250.

E. Forest and R. Ruth (1990), ‘Fourth-order symplectic integration’, Physica D 43, 105117.

J. de Frutos , T. Ortega and J.M. Sanz-Serna (1990), ‘A Hamiltonian, explicit algorithm with spectral accuracy for the “good” Boussinesq system’, Comput. Methods Appl. Mech. Engrg. 80, 417423.

Ge Zhong and J.E. Marsden (1988), ‘Lie–Poisson Hamilton–Jacobi theory and Lie-Poisson integrators’, Phys. Lett. A 133, 134139.

D.F. Griffiths and J.M. Sanz-Serna (1986), ‘On the scope of the method of modified equations‘, SIAM J. Sci. Stat. Comput. 7, 9941008.

J. Guckenheimer and P. Holmes (1983), Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer (New York).

E. Hairer , A. Iserles and J.M. Sanz-Serna (1990), ‘Equilibria of Runge–Kutta methods’, Numer. Math. 58, 243254.

E. Hairer , S.P. Nørsett and G. Wanner (1987), Solving Ordinary Differential Equations I, Nonstiff Problems, Springer (Berlin).

A. Iserles (1990a), ‘Stability and dynamics of numerical methods for ordinary differential equations’, IMA J. Numer. Anal. 10, 130.

A. Iserles (1990b), ‘Efficient Runge–Kutta methods for Hamiltonian equations’, Numerical Analysis Report DAMTP, Report 1990/NA10, University of Cambridge.

A. Iserles and S.P. Nørsett (1991), Order Stars, Chapman and Hall (London).

F. Lasagni (1988), ‘Canonical Runge–Kutta methods’, ZAMP 39, 952953.

C.R. Menyuk (1984), ‘Some properties of the discrete Hamiltonian method’, Physica D 11, 109129.

A.I. Neishtadt (1984), ‘The separation of motions in systems with rapidly rotating phase’, J. Appl. Math. Mech 48, 133139.

D.I. Pullin and P.G. Saffman (1991), ‘Long-tune symplectic integration: the example of four-vortex motion’, Proc. Roy. Soc. Lond. A432, 481494.

Qin Meng-zhao and Zhang Mei-qing (1990), ‘Multi-stage symplectic schemes of two kinds of Hamiltonian systems for wave equations’, Comput. Math. Appl. 19, 5162.

R.D. Ruth (1983), ‘A canonical integration techniqe’, IEEE Trans. Nucl. Sci. 30, 26692671.

J.M. Sanz-Serna (1988), ‘Runge–Kutta schemes for Hamiltonian systems’, BIT 28, 877883.

J.M. Sanz-Serna and L. Abia (1991), ‘Order conditions for canonical Runge-Kutta schemes’, SIAM J. Numer. Anal. 28, 10811096.

J.M. Sanz-Serna and D.F. Griffiths (1991), ‘A new class of results for the algebraic equations of implicit Runge-Kutta processes’, IMA J. Numer. Anal, to appear.

J.M. Sanz-Serna and F. Vadillo (1987), ‘Studies in nonlinear instability III: augmented Hamiltonian problems’, SIAM J. Appl. Math. 47, 92108.

R.F. Warming and B.J. Hyett (1974), ‘The modified equation approach to the stability and accuracy analysis of finite difference methods’, J. Comput. Phys. 14, 159179.

H. Yoshida (1990), ‘Construction of higher order symplectic integrators’, Phys. Lett. A150, 262268.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Acta Numerica
  • ISSN: 0962-4929
  • EISSN: 1474-0508
  • URL: /core/journals/acta-numerica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×