Skip to main content
×
×
Home

Applications of Unmanned Aerial Vehicles in Weed Science

  • J. M. Prince Czarnecki (a1), S. Samiappan (a1), L. Wasson (a1), J. D. McCurdy (a2), D. B. Reynolds (a2), W. P. Williams (a3) and R. J. Moorhead (a1)...
Abstract

For most producers, unmanned aerial vehicles (UAV) are a novelty that has been little employed in their agricultural operations. An UAV will not fix every problem on the farm, but there are some practical applications for which UAVs have demonstrated value. Three examples of how UAVs have been used in weed science applications are presented here; the methods are transferable to other agricultural commodities with similar characteristics. The first of these is quantification of the extent and severity of non-target herbicide injury. The second application is calculation of spray thresholds based on weed populations. The third application is development of site-specific herbicide treatment.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Applications of Unmanned Aerial Vehicles in Weed Science
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Applications of Unmanned Aerial Vehicles in Weed Science
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Applications of Unmanned Aerial Vehicles in Weed Science
      Available formats
      ×
Copyright
Corresponding author
E-mail: Joby.Czarnecki@msstate.edu
References
Hide All
Bagavathiannan, MV and Norsworthy, JK 2012. Late-season seed production in arable weed communities: management implications. Weed Science 60, 325334.
Bell, GE and Xiong, X 2008. Chapter 36: The History, Role, and Potential of Optical Sensing for Practical Turf Management. In Handbook of Turfgrass Management and Physiology, edited by M Pessarakli, CRC Press, Boca Raton, Florida 641660.
Carrow, RN, Krum, JM, Flitcroft, I and Cline, V 2010. Precision turfgrass management: challenges and field applications for mapping turfgrass soil and stress. Precision Agriculture 11, 115134.
Chapman, SC, Merz, T, Chan, A, Jackway, P, Hrabar, S, Dreccer, MF, et al. 2014. Pheno-copter: a low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping. Agronomy 4, 279301.
Dicke, D, Jacobi, J and Büchse, A 2012. Quantifying herbicide injuries in maize by use of remote sensing. Julius-Kühn-Archiv 434, 199205.
Heap, I 2016. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org (retrieved 30/11/16).
Longchamps, L, Panneton, B, Simard, M-J and Leroux, GD 2014. An imagery-based weed cover threshold established using expert knowledge. Weed Science 62, 177185.
Lopez‐Granados, F 2011. Weed detection for site‐specific weed management: mapping and real‐time approaches. Weed Research 51, 111.
Miller, T, Street, JE, Buehring, N, Kanter, D, Walker, TW, Bond, JA, et al. 2008. Mississippi’s Rice Growers’ Guide. Mississippi State University. Extension Service Publication 2255. http://extension.msstate.edu/sites/default/files/publications/publications/p2255.pdf (retreived 12/12/16).
Pena, JM, Torres-Sanchez, J, de Castro, AI, Kelly, M and Lopez-Granados, F 2013. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLOS One 8, e77151.
Rasmussen, J, Nielsen, J, Garcia‐Ruiz, F, Christensen, S and Streibig, JC 2013. Potential uses of small unmanned aircraft systems (UAS) in weed research. Weed Research 53, 242248.
Shaner, DL and Beckie, HJ 2014. The future for weed control and technology. Pest management science 70, 13291339.
Tanimoto, SL 1981. Template matching in pyramids. Computer Graphics and Image Processing 16, 356369.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Animal Biosciences
  • ISSN: 2040-4700
  • EISSN: 2040-4719
  • URL: /core/journals/advances-in-animal-biosciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed