[1]Ding H. and Zhang Y., A new difference scheme with high accuracy and absolute stability for solving convection-diffusion equations, J. Comput. Appl. Math., 230 (2009), pp. 600–606.

[2]Elman H. C., Silvester D. J. AND Wathen A. J., Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics, Oxford University Press, New York, 2005.

[3]Ghia U., Ghia K. N. and Shin C. T., High Re-solution for incompressible Navier-Stokes equation and a multigrid method, J. Comput. Phys., 48 (1982), pp. 387–411.

[4]Gupta M. M., High accuracy solutions of incompressible Navier-Stokes equations, J. Comput. Phys., 93 (1991), pp. 343–359.

[5]Gupta M. M. and Kalita J. C., A new paradigm for solving Navier-Stokes equations: streamfunction-velocity formulation, J. Comput. Phys., 207 (2005), pp. 52–68.

[6]Hsieh P.-W. and Yang S.-Y., Two new upwind difference schemes for a coupled system of convection-diffusion equations arising from the steady MHD duct flow problems, J. Comput. Phys., 229 (2010), pp. 9216–9234.

[7]Hsieh P.-W. and Yang S.-Y., A novel least-squaresfinite element method enriched with residualfree bubbles for solving convection-dominated problems, SIAM J. Sci. Comput., 32 (2010), pp. 2047–2073.

[8]Karaa S. and Zhang J., High order ADI method for solving unsteady convection-diffusion problems, J. Comput. Phys., 198 (2004), pp. 1–9.

[9]Karaa S., A hybrid Pade ADI scheme of higher-order for convection-diffusion problems, Int. J. Numer. Meth. Fluids, 64 (2010), pp. 532–548.

[10]LeVeque R. J., Finite Difference Methods for Ordinary and Partial Differential Equations, Society for Industrial and Applied Mathematics, Philadelphia, USA, 2007.

[11]Li M., Tang T. and Fornberg B., A compact fourth-order finite difference scheme for the steady incompressibe Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 20 (1995), pp. 1137–1151.

[12]Li M. and Tang T., A compact fourth-order finite difference scheme for unsteady viscous incompressible flows, J. Sci. Comput., 16 (2001), pp. 29–45.

[13]Mahesh K., A family of high order finite difference schemes with good spectral resolution, J. Comput. Phys., 145 (1998), pp. 332–358.

[14]Morton K. W., Numerical Solution of Convection-Diffusion Problems, Chapman & Hall, London, UK, 1996.

[15]O’Riordan E. and Stynes M., Numerical analysis of a strongly coupled system of two singularly perturbed convection-diffusion problems, Adv. Comput. Math., 30 (2009), pp. 101–121.

[16]Radhakrishna Pillai A. C., Fourth-order exponential finite difference methods for boundary value problems of convective diffusion type, Int. J. Numer. Meth. Fluids, 37 (2001), pp. 87–106.

[17]Roos H.-G., Stynes M. and Tobiska L., Numerical Methods for Singularly Perturbed Differential Equations, Springer, New York, 1996.

[18]Sanyasiraju Y. V. S. S. and Mishra N., Spectral resolutioned exponential compact higher order scheme (SRECHOS) for convection-diffusion equations, Comput. Methods Appl. Mech. Eng., 197 (2008), pp. 4737–4744.

[19]Sanyasiraju Y. V. S. S. and Mishra N., Exponential compact higher order scheme for nonlinear steady convection-diffusion equations, Commun. Comput. Phys., 9 (2011), pp. 897–916.

[20]Spotz W. F., High-Order Compact Finite Difference Schemes for Computational Mechanics, Ph.D. Dissertation, the University of Texas at Austin, December 1995.

[21]Spotz W. F., Accuracy and performance of numerical wall boundary conditions for steady, 2D, incompressible streamfunction vorticity, Int. J. Numer. Meth. Fluids, 28 (1998), pp. 737–757.

[22]Spotz W. F. and Carey G. F., High-order compact scheme for the stream-function vorticity equations, Int. J. Numer. Meth. Eng., 38 (1995), pp. 3497–3512.

[23]Stynes M., Steady-state convection-diffusion problems, Acta Numer., (2005), pp. 445–508.

[24]Tian Z. F. and Dai S. Q., High-order compact exponential finite difference methods for convection-diffusion type problems, J. Comput. Phys., 220 (2007), pp. 952–974.

[25]Tian Z. F. and Ge Y. B., A fourth-order compact ADI method for solving two-dimensional unsteady convection-diffusion problems, J. Comput. Appl. Math., 198 (2007), pp. 268–286.

[26]Yavneh I., Analysis of a fourth-order compact scheme for convection-diffusion, J. Comput. Phys., 133 (1997), pp. 361–364.