Skip to main content

A Priori Error Estimates of Finite Element Methods for Linear Parabolic Integro-Differential Optimal Control Problems

  • Wanfang Shen (a1), Liang Ge (a2), Danping Yang (a3) and Wenbin Liu (a4)

In this paper, we study the mathematical formulation for an optimal control problem governed by a linear parabolic integro-differential equation and present the optimality conditions. We then set up its weak formulation and the finite element approximation scheme. Based on these we derive the a priori error estimates for its finite element approximation both in H1 and L2 norms. Furthermore some numerical tests are presented to verify the theoretical results.

Corresponding author
Corresponding author. Email:
Hide All
[1]Alt W., On the approximation of infinite optimisation problems with an application to optimal control problems, Appl. Math. Optim., (1984), pp. 1527.
[2]Cannon J. R. and Lin Y., A priori L2 error estimates for Galerkin method for nonlinear parabolic integro-differential equations, Manuscript, 1987.
[3]Falk F. S., Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), pp. 2847.
[4]French D. A. and King J. T., Approximation of an elliptic control problem by the finite element method, Numer. Funct. Anal. Appl., 12 (1991), pp. 299315.
[5]Friedman A. and Shinbrot M., Volterra integral equations in banach space, Trans. Amer. Math. Soc., 126 (1967), pp. 131179.
[6]Grimmer R. C. and Pritchard A. J., Analytic resolvent operators for integral equations in Banach space, J. Differential Equations, 50 (1983), pp. 234259.
[7]Heard M. L., An abstract parabolic Volterra integro-differential equation, SIAM J. Math. Anal., 13 (1982), pp. 81105.
[8]Hermann B. and Yan N. N., Finite element methods for optimal control problems governed by integral equations and integro-differrential equations, Numerische Mathematik, 101 (2005), pp. 127.
[9]Kufner A., John, O. and Fucik S., Function Spaces, Nordhoff, Leiden, The Netherlands, 1977.
[10]Lions J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.
[11]Lions J. L. and Magenes E., Non Homogeneous Boundary Value Problems and Applications, Grandlehre B, 181, Springer-Verlag, 1972.
[12]Lunardi A. and Sinestrari E., C™-regularity of non-autonomous linear integro-differential equations of parabolic type, J. Differential Equations, 63 (1986), pp. 88116.
[13]Lorenzi A. and Sinestrari E., An inverse problem in the theory of materials with memory, Nonlinear Anal. Theory Methods Appl., 12 (1988), pp. 13171335.
[14]Leroux M.-N. and Thomee V., Numerical solution of semilinear integro-differential equations of parabolic type with nonsmooth data, SIAM J. Numer. Anal., 26 (1989), pp. 12911300.
[15]Lin Y., Thomee, V. and Wahlbin L., Ritz-volterra projections to finite element spaces and applications to integro-differential and related equations, SIAM J. Numer. Anal., 28 (1991), pp. 10471070.
[16]Li R., On multi-mesh h-adaptive algorithm, J. Sci. Comput., 24 (2005), pp. 321341.
[17]Malanowski K., Convergence of approximations vs. regularity of solutions for convex, control constrained, Optimal Control Systems Appl. Math. Optim., 8 (1982).
[18]Neittaanmaki P., Tiba D. AND Dekker M., Optimal Control of Nonlinear Parabolic Systems, Theory, Algorithms and Applications, New York, 1994.
[19]Pironneau O., Optimal Shape Design for Elliptic Systems, Springer-Verlag, Berlin, 1984.
[20]Renardy M., Hrusa, W. J. and Nohel J. A., Mathematical problems in viscoelasticity, pitman monographs and surveys in pure and applied mathematics, Longman Scientific and Technical, Harlow, Essex, 35 (1987).
[21]Sloan I. H. AND Thomee V., Time discretization of an integro-differential equation of parabolic type, SIAM J. Numer. Anal., 23 (1986), pp. 10521061.
[22]Tiba D., Lectures on the Optimal Control of Elliptic Equations, University of Jyvaskyla Press, Finland, 1995.
[23]Tiba D., Optimal control of nonsmooth distributed parameter systems, Lecture Notes Math., 1459 (1990), Springer-Verlag, Berlin.
[24]Tiba D. and Troltzsch F., Error estimates for the discretization of state constrained convex control problems, Numer. Funct. Anal. Optim., 17 (1996), pp. 10051028.
[25]Thomee V. and Zhang N.-Y., Error estimates for semidiscrete finite element methods for parabolic integro-differential equations, Math. Comput., 53 (1989), pp. 121139.
[26]Verfurth R., A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement, Wiley-Teubner, London, UK, 1996.
[27]Yanik E. G. and Fairweather G., Finite element methods for parabolic and hyperbolic partial integro-differential equations, Nonlinear Anal., 12 (1988), pp. 785809.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Mathematics and Mechanics
  • ISSN: 2070-0733
  • EISSN: 2075-1354
  • URL: /core/journals/advances-in-applied-mathematics-and-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 51 *
Loading metrics...

* Views captured on Cambridge Core between 8th April 2017 - 22nd January 2018. This data will be updated every 24 hours.