This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] P. Bochev , C. R. Dohrmann and M. D. Gunzburger , A computational study of stabilized, low order C0 finite element approximations of Darcy equations, Comput. Mech., 38 (2006), pp. 323–333.

[2] P. Bochev , C. R. Dohrmann and M. D. Gunzburger , Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal., 44 (2006), pp. 82–101.

[3] Z. Chen , Finite Element Methods and Their Applications, Spring-Verlag, Heidelberg, 2005.

[4] Z. Chen , The control volume finite element methods and their applications to multiphase flow, Netw. Heterog. Media, 1 (2006), pp. 689–706.

[5] P. G. Ciarlet , The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

[6] S. H. Chou AND Q. Li , Error estimates in L2, H1 and L∞ in co-volume methods for elliptic and parabolic problems: a unified approach, Math. Comput., 69 (2000), pp. 103–120.

[7] C. Chen and W. Liu , Two-grid finite volume element methods for semilinear parabolic problems, Appl. Numer. Math., 60 (2010), pp. 10–18.

[9] Z. Cai , J. Mandel and S. Mc-ormick , The finite volume element method for diffusion equations on general triangulations, SIAM J. Numer. Anal., 28 (1991), pp. 392–403.

[10] R. E. Ewing , T. Lin and Y. Lin , On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM J. Numer. Anal., 39 (2002), pp. 1865–1888.

[13] Y. He and J. Li , A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equation, Appl. Numer. Math., 58 (2008), pp. 1503–1514.

[14] J. G. Heywood and R. Rannacher , Finite element approximations of nonstationary Navier- Stokes problem, Part I: Regularity of solutions and second-order spatial discretization, SIAM J. Numer. Anal., 19 (1982), pp. 275–311.

[15] Y. He , A. Wang and L. Mei , Stabilized finite-element method for the stationary Navier-Stokes equations, J. Eng. Math., 51 (2005), pp. 367–380.

[16] P. Huang , T. Zhang and X. Ma , Superconvergence by L2-projection for a stabilized finite volume method for the stationary Navier-Stokes equations, Comput. Math. Appl., 62 (2011), pp. 4249–4257.

[17] W. Layton , A two-level discretization method for the Navier-Stokes equations, Comput. Math. Appl., 26 (1993), pp. 33–38.

[18] J. Li and Z. Chen , A new stabilized finite volume method for stationary Stokes equations, Adv. Comput. Math., 30 (2009), pp. 141–152.

[20] J. Li and Z. Chen , Optimal L2, H1 and L∞ analysis of finite volume methods for the stationary Navier-Stokes equations with large data, Numerische Mathematik., 126 (2014), pp. 75–101.

[21] J. Li , Z. Chen, and Y. He , A stabilized multi-level method for non-singular finite volume solutions of the stationary 3D Navier-Stokes equations, Numerische Mathematik., 122 (2012), pp. 279–304.

[22] J. Li and Y. He , A new stabilized finite element method based on two local Gauss integration for the Stokes equations, J. Comput. Appl. Math., 214 (2008), pp. 58–65.

[23] K. Li and Y. Hou , An AIM and one-step newton method for the Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 190 (2001), pp. 6141–6155.

[24] J. Li , Y. He and Z. Chen , A new stabilized finite element method for the transient Navier-Stokes equations, Comput. Meth. Appl. Mech. Eng., 197 (2007), pp. 22–35.

[25] J. Li , Y. He and Z. Chen , Performance of several stabilized finite element methods for the Stokes equations based on the lowest equal-order pairs, Comput., 86 (2009), pp. 37–51.

[26] J. Li , Y. He and H. Xu , A multi-level stabilized finite element method for the stationary Navier- Stoke equations, Comput. Meth. Appl. Mech. Eng., 196 (2007), pp. 2852–2862.

[28] W. Layton and W. Lenferink , A multi-level mesh independence principle for the Navier-Stokes equations, SiAM J. Numer. Anal., 33 (1996), pp. 17–30.

[29] W. Layton , H. K. Lee and J. Peterson , Numerical solution of the stationary Navier-Stokes equations using a multilevel finite lement method, SiAM J. Sci. Comput., 20 (1998), pp. 1–12.

[30] J. Li , L. Shen and Z. Chen , Convergence and stability of a stabilized finite volume method for stationary Navier-Stokes equations, BiT Numer. Math., 50 (2010), pp. 823–842.

[35] J. Xu , A novel two-grid method for semilinear elliptic equations, SiAM J. Sci. Comput., 15 (1994), pp. 231–237.

[36] J. Xu , Two-grid finite element discretization techniques for linear and nonlinear PDE, SiAM J. Numer. Anal., 33 (1996), pp. 1759–1777.