Hostname: page-component-546b4f848f-fhndm Total loading time: 0 Render date: 2023-06-02T13:34:25.181Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Modeling Freshwater Reservoir Offsets on Radiocarbon-Dated Charred Cooking Residues

Published online by Cambridge University Press:  20 January 2017

John P. Hart
Research and Collections Division, 3140 Cultural Education Center, New York State Museum, Albany, NY 12230 (
William A. Lovis
Department of Anthropology and MSU Museum, 355 Baker Hall, 655 Auditorium Road, Michigan State University, East Lansing, MI 48824 (
Gerald R. Urquhart
Lyman Briggs College, 35 E. Holmes Hall and Department of Fisheries and Wildlife, 13 Natural Resources Building, 919 E. Shaw Lane, Michigan State University, East Lansing, MI 48824 (
Eleanora A. Reber
Department of Anthropology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403 (


Obtaining radiocarbon assays on objects of chronological interest is always preferable to obtaining assays on spatially associated charcoal. The development of Accelerator Mass Spectrometer (AMS) dating has expanded the number of objects that can be directly assayed because it requires only a few milligrams of material. Pottery can be directly assayed when charred cooking residues adhering to the interior walls are present. The accuracy of AMS ages derived from residues has been questioned in cases where cooking freshwater aquatic organisms may have introduced carbon from ancient carbon reservoirs into residues. Here we provide analytic protocols for examination of this phenomenon and the results of systematic modeling of age estimates on residues formed from fish and maize with varying percentages of dead carbon. We present a regional case study using a large series of AMS age estimates on residues from the Finger Lakes region of northeastern United States to demonstrate how the paleolimnological record and lipid analysis of residues can help to determine if dates on residues from a given region are likely to have been affected by the presence of ancient carbon. In the case of the Finger Lakes, there is no evidence that ancient carbon affected the age estimates.



Obtener análisis por radiocarbono en objetos de interés cronológico es preferible que obtener análisis de carbono asociado con el espacio. El desarrollo de la datación por medio del Acelerador Espectrómetro de Masa (AMS) ha expandido el número de objetos que pueden ser analizados directamente, dado que éste requiere solamente algunos miligramos de material. Cuando están presentes, los residuos del carbono cocinado, adheridos a las capas interiores de la cerámica, permiten el análisis directo de la cerámica. Esta se ha convertido en una práctica común en todo el mundo. La exactitud de la datación por medio del Acelerador Espectrómetro de Masa derivada de los residuos ha sido cuestionada en casos donde organismos acuáticos de agua dulce, al ser cocinados, pueden haber introducido carbono de viejos depósitos de carbono dentro de los residuos. Aquí proveemos protocolos analíticos para el análisis de este fenómeno y los resultados de modelos sistemáticos de análisis en residuos formados por peces y maíz con varios porcentajes de carbono antiguo. Presentamos un estudio regional que usa una larga serie de cálculos de edades de Aceleración de Espectrometría de Masa en residuos extraídos de Finger Lakes, ubicados en la región noreste de Los Estados Unidos, para demostrar cómo el registro paleolimnológico y el análisis lipido de residuos pueden ayudar a determinar si las fechas de los residuos provenientes de alguna región hayan sido afectadas por la presencia de carbono antiguo. En el caso de la región Finger Lakes, no hay evidencia de que el carbono antiguo haya afectado el cálculo de edades.

Copyright © 2013 by the Society for American Archaeology.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


References Cited

Anderson, William T., Mullins, Henry T., and Ito, Emi 1997 Stable Isotope Record from Seneca Lake, New York: Evidence for a Cold Paleoclimate Following the Younger Dryas. Geology 25:135138.Google Scholar
Ascough, Philippa, Cook, Gordon, and Dugmore, Andrew 2005 Methodological Approaches to Determining the Marine Radiocarbon Reservoir Effect. Progress in Physical Geography 29:532547.Google Scholar
Ascough, P. L., Cook, G. T., Hastie, H., Dunbar, E., Church, M. J., Einarsson, A., McGovern, T. H., and Dugmore, A. J. 2011 An Icelandic Freshwater Radiocarbon Reservoir Effect: Implications for Lacustrine l4C Chronologies. The Holocene 21:10731080.Google Scholar
Bogaard, A., Heaton, T. H. E., Poulton, P., and Merbach, I. 2007 The Impact of Manuring on Nitrogen Isotope Ratios in Cereals: Archaeological Implications for Reconstruction of Diet and Crop Management Practices. Journal of Archaeological Science 34:335343.Google Scholar
Boudin, Mathieu, Strydonck, Mark Van, Crombé, Philippe, Clercq, Wim De, van Dierendonck, Robert M., Jongepier, Hans, Ervynck, Anton, and Lentacker, An 2010 Fish Reservoir Effect on Charred Food Residue 14C Dates: Are Stable Isotope Analyses the Solution? Radiocarbon 52:697705.Google Scholar
Broecker, W. S., and Walton, A. 1959 The Geochemistry of C14 in Fresh-water Systems. Geochimica et Cosmochimica Acta 16:1538.Google Scholar
Bronk Ramsey, Christopher 2009 Bayesian Analysis of Radiocarbon Dates. Radiocarbon 51:337360.Google Scholar
Callinan, Clifford W. 2001 Water Quality Study of the Finger Lakes. New York State Department of Environmental Conservation, Albany.
Colman, S. M., Jones, G. A., Forester, R. M., and Foster, D. S. 1990 Holocene Paleoclimatic Evidence and Sedimentation Rates from a Core in Southwestern Lake Michigan. Journal of Paleolimnology 4:269284.Google Scholar
Commisso, R. G., and Nelson, D. E. 2006 Modem Plant δ15N Values Reflect Ancient Human Activity. Journal of Archaeological Science 33:11671176.Google Scholar
Cook, Gordon T., Bonsall, C., Hedges, Robert M., McSweeney, K., Boronean, V., and Pettitt, Paul B. 2001 A Freshwater Diet-Derived C-14 Reservoir Effect at the Stone Age Sites in the Iron Gates Gorge. Radiocarbon 43:453460.Google Scholar
Corr, Lorna T., Richards, Michael P., Jim, Susan, Ambrose, Stanley H., Mackie, Alexander, Beattie, Owen, and Evershed, Richard P. 2008 Probing Dietary Change of the Kwäd_y Dän Ts’ìnch_Individual, an Ancient Glacier Body from British Columbia: I. Complementary Use of Marine Lipid Biomarker and Carbon Isotope Signatures as Novel Indicators of a Marine Diet. Journal of Archaeological Science 35:21022110.Google Scholar
Craig, O. E., Forster, M., Andersen, S. H., Koch, E., Crombe, P., Milner, N. J., Stem, B., Bailey, G. N., and Heron, C. P. 2007 Molecular and Isotopic Demonstration of the Processing of Aquatic Products in Northern European Prehistoric Pottery. Archaeometry 49:135152.Google Scholar
Craig, O. E., Saul, H., Lucquin, A., Nishida, Y., Taché, K., Clarke, L., Thompson, A., Altoft, D. T., Uchiyama, J., Ajimoto, M., Gibbs, K., Isaksson, S., Heron, C. P., and Jordan, P.. 2013 Earliest Evidence for the Use of Pottery. Nature, in press.
Craig, Oliver E., Steele, Val J., Fischer, Anders, Hartz, Sönke, Andersen, SØren H., Donohoe, Paul, Glykou, Aikaterini, Saul, Hayley, Martin Jones, D., Koch, Eva, and Heron, Carl P. 2011 Ancient Lipids Reveal Continuity in Culinary Practices across the Transition to Agriculture in Northern Europe. Proceedings of the National Academy of Sciences 108:1791017915.Google Scholar
Crawford, Gary W., Smith, David D., Desloges, Joseph R., and Davis, Anthony M. 1997 Floodplains and Agricultural Origins: A Case Study in South-Central Ontario, Canada. Journal of Field Archaeology 25:123137.Google Scholar
Dence, Wilford A., and Jackson, Daniel F. 1959 Changing Chemical and Biological Conditions in Oneida Lake, New York. School Science and Mathematics 59:317324.Google Scholar
Dumond, Don E., and Griffin, Dennis G. 2002 Measurements of the Marine Reservoir Effect on Radiocarbon Ages in the Eastern Bering Sea. Arctic 55:7786.Google Scholar
Evershed, R. P., Copley, M. S., Dickson, L., and Hansel, F. A. 2008 Experimental Evidence for the Processing of Marine Animal Products and Other Commodities Containing Polyunsaturated Fatty Acids in Pottery Vessels. Archaeometry 50: 101113.Google Scholar
Fischer, Anders, and Heinemeier, Jan 2003 Freshwater Reservoir Effect in 14C Dates of Food Residue on Pottery. Radiocarbon 45:449466.Google Scholar
Fischer, Anders, Olsen, Jesper, Richards, Mike, Heinemeier, Jan, Sveinbjornsdottir, Amy E., and Bennike, Pia 2007 Coast-Inland Mobility and Diet in the Danish Mesolithic and Neolithic—Evidence from Stable Isotope Values of Humans and Dogs. Journal of Archaeological Science 34:21252150.Google Scholar
Friedrich, Gemot E., Ledesma, Jesus, Ulloa, Osvaldo, and Chavez, Francisco P. 2008 Air-Sea Carbon Dioxide Fluxes in the Coastal Southeastern Tropical Pacific. Progress in Oceanography 79:156166.Google Scholar
Genty, Dominique, Baker, Andy, Massault, Marc, Proctor, Chris, Gilmour, Mabs, Pons-Bransch, Edwige, and Hamelin, Bruno 2001 Dead Carbon in Stalagmites: Carbonate Bedrock Paleodissolution vs. Ageing of Soil Organic Matter. Implications for l3C Variations in Speleothems. Geochimica et Cosmochimica Acta 65:34433457.Google Scholar
Genty, Dominique, and Massault, Marc 1999 Carbon Transfer Dynamics from Bomb-l4C and d13C Time Series of a Laminated Stalagmite from SW France—Modeling and Comparison with Other Stalagmite Records. Geochimica et Cosmochimica Acta 63:15371548.Google Scholar
Geyh, Mebus A. 2000 An Overview of 4C Analysis in the Study of Groundwater. Radiocarbon 42:99114.Google Scholar
Grimm, Eric C., Maher, Louis J., and Nelson, David M. 2009 The Magnitude of Error in Conventional Bulk-Sediment Radiocarbon Dates from Central North America. Quaternary Research 72:301308.Google Scholar
Hansel, Fabricio A., Copley, Mark S., Madureira, Luiz A. S., and Evershed, Richard P. 2004 Thermally Produced x-(o-alkylphenyl)alkanoic Acids Provide Evidence for the Processing of Marine Products in Archaeological Pottery Vessels. Tetrahedron Letter 45:29993002.Google Scholar
Harkness, Douglas D., and Walton, Alan 1972 Further Investigations of the Transfer of Bomb 14C to Man. Scottish Research Reactor Centre, East Kilbride, Scotland.
Hart, John P. 2012 Pottery Wall Thinning as a Consequence of Increased Maize Processing: A Case Study from Central New York. Journal of Archaeological Science 39:34703474.Google Scholar
Hart, John P., and Brumbach, Hetty Jo 2005 Cooking Residues, AMS Dates, and the Middle-to-Late-Woodland Transition in Central New York. Northeast Anthropology 69:134.Google Scholar
Hart, John P., Brumbach, Hetty Jo, and Lusteck, Robert 2007 Extending the Phytolith Evidence for Early Maize (Zea mays ssp. mays) and Squash (Cucurbita sp.) in Central New York. American Antiquity 72:563583.Google Scholar
Hart, John P., and Lovis, William A. 2007a A Multi-Regional Analysis of AMS and Radiometric Dates from Carbonized Food Residues. Midcontinental Journal of Archaeology 32:201261.Google Scholar
Hart, John P., and Lovis, William A. 2007b The Freshwater Reservoir and Radiocarbon Dates on Charred Cooking Residues: Old Apparent Ages or a Single Outlier? Comment on Fischer and Heinemeier (2003). Radiocarbon 49:14031410.Google Scholar
Hart, John P., Lovis, William A., Jeske, Robert J., and Richards, John D. 2012 The Potential of Bulk δ13C on Encrusted Cooking Residues as Independent Evidence for Regional Maize Histories. American Antiquity 77:315325.Google Scholar
Hart, John P., Lovis, William A., Schulenberg, Janet K., and Urquhart, Gerald R. 2007 Paleodietary Implications from Stable Carbon Isotope Analysis of Experimental Cooking Residues. Journal of Archaeological Science 34:804813.Google Scholar
Hart, John P., Reber, Eleanora A., Thompson, Robert G., and Lusteck, Robert 2008 Taking Variation Seriously: Evidence for Steatite Vessel Use from the Hunter’s Home Site, New York. American Antiquity 76:729741.Google Scholar
Hart, John P., Urquhart, Gerald R., Feranec, Robert S., and Lovis, William A. 2009 Nonlinear Relationship between Bulk δ13C and Percent Maize in Carbonized Cooking Residues and the Potential of False Negatives in Detecting Maize. Journal of Archaeological Science 36:22062212.Google Scholar
Hohman-Caine, Christy A., and Leigh Syms, E. 2012 The Age of Brainerd Ceramics. Report prepared for Minnesota Historical Society Contract No. 4107232. Prepared by Soils Consulting, Hackensack, Minnesota.
Ikehara, Ken, Danhara, Tohru, Yamashita, Tohru, Tanahashi, Manabu, Morita, Sumito, and Ohkushi, Ken’ichi 2011 Paleoceanographic Control on a Large Marine Reservoir Effect Offshore of Tokai, South of Japan, NW Pacific, during the Last Glacial Maximum-Deglaciation. Quaternary International 246:213221.Google Scholar
Keaveney, Evelyn M., and Reimer, Paula J. 2012 Understanding the Variability in Freshwater Radiocarbon Reservoir Offsets: A Cautionary Tale. Journal of Archaeological Science 39:13061316.Google Scholar
Lajewski, C. K., Mullins, H. T., Patterson, W. P., and Callinan, C. W. 2003 Historic Calcite Record from the Finger Lakes, New York: Impact of Acid Rain on a Buffered Terrane. Geological Society of America Bulletin 115:373384.Google Scholar
Lovis, William A. 1990 Curatorial Considerations for Systematic Research Collections: AMS Dating of a Curated Ceramic Assemblage. American Antiquity 55:382387.Google Scholar
Lovis, William A., Egan-Bruhy, Kathryn C., Smith, Beverley A., and William Monaghan, G. 2001 Wetlands and Emergent Horticultural Economies in the Upper Great Lakes: A New Perspective from the Schultz Site. American Antiquity 66:615632.Google Scholar
Lovis, William A., Urquhart, Gerald R., Raviele, Maria E., and Hart, John P. 2011 Hardwood Ash Nixtamalization May Lead to False Negatives for the Presence of Maize by Depleting Bulk δ13C in Carbonized Residues. Journal of Archaeological Science 38:27262730.Google Scholar
Miyata, Yoshiki, Minami, Masayo, Onbe, Shin, Sakamoto, Minora, Matsuzaki, Hiroyuki, Nakamura, Toshio, and Imamura, Mineo 2011 Difference in Radiocarbon Ages of Carbonized Material from the Inner and Outer Surfaces of Pottery from a Wetland Archaeological Site. Proceedings of the Japan Academy Series B 87:518528.Google Scholar
Mrozowski, Stephen A. 1994 The Discovery of a Native American Cornfield on Cape Cod. Archaeology of Eastern North America 22:4762.Google Scholar
Mullins, Henry T. 1998 Environmental Change Controls of Lacustrine Carbonate, Cayuga Lake, New York. Geology 26:443446.Google Scholar
Muffins, Henry T., Patterson, William P., Teece, Mark A., and Burnett, Adam W. 2011 Holocene Climate and Environmental Change in Central New York (USA). Journal of Paleolimnology 45:243256.Google Scholar
Olsson, Monika, and Isaksson, Sven 2008 Molecular and Isotopic Traces of Cooking and Consumption of Fish at an Early Medieval Manor Site in Eastern Middle Sweden. Journal of Archaeological Science 35:773780.Google Scholar
Philippsen, Bente 2008 Hard Water or High Ages? 14C Food Crust Analysis on Mesolithic Pottery from Northern Germany. Diploma thesis in physics, University of Heidelberg.
Philippsen, Bente, Kjeldsen, Henrik, Hartz, Sonke, Paulsen, Harm, Clausen, Ingo, and Heinemeier, Jan 2010 The Hardwater Effect in AMS 14C Dating of Food Crusts on Pottery. Nuclear Instruments and Methods in Physics Research B 268:995998.Google Scholar
Raviele, Maria E. 2010 Assessing Carbonized Archaeological Cooking Residues: Evaluation of Maize Phytolith Taphonomy and Density through Experimental Residue Analysis. Ph.D. dissertation, Department of Anthropology, Michigan State University, East Lansing.
Rea, David K., and Colman, Steven M. 1995 Radiocarbon Ages of Pre-bomb Clams and the Hard-Water Effect in Lakes Michigan and Huron. Journal of Paleolimnology 14:8991.Google Scholar
Reber, Eleanora A., and Evershed, Richard P. 2004 Identification of Maize in Absorbed Organic Residues: A Cautionary Tale. Journal of Archaeological Science 31:399410.Google Scholar
Reber, Eleanora A., and Hart, John P. 2008 Pine Resins and Pottery Sealing: Analysis of Absorbed and Visible Pottery Residues from Central New York State. Archaeometry 50:9991117.Google Scholar
Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J., and Weyhenmeyer, C. E. 2009 IntCal09 and Marine09 Radiocarbon Age Calibration Curves,0–50,000 Years Cal BP. Radiocarbon 51:11111150.Google Scholar
Reimer, Paul J., and Reimer, Ron W. 2001 A Marine Reservoir Correction Database and On-line Interface. Radiocarbon 43:461463.Google Scholar
Ritchie, William A. 1969 The Archaeology of New York State. 2nd edition. Natural History Press, New York.
Ritchie, William A., and Funk, Robert E. 1973 Aboriginal Settlement Patterns in the Northeast. New York State Museum Memoir No. 20. The University of the State of New York, Albany.
Schulenberg, Janet K. 2002 The Point Peninsula to Owasco Transition in Central New York. Ph.D. dissertation, Department of Anthropology, The Pennsylvania State University, College Park.
Shishlina, N. I., van der Plicht, J., Hedges, R. E. M., Zazovskaya, E. P., Sevastyanov, V. S., and Chichagova, O. A. 2007 The Catacomb Cultures of the North-West Caspian Steppe: 14C Chronology, Reservoir Effect, and Paleodiet. Radiocarbon 49:713726.Google Scholar
Snow, Dean R. 2005 Microchronology and Demographic Evidence Relating to the Size of Pre-Columbian North American Indian Populations. Science 268:16011604.Google Scholar
Szpak, Paul, Longstaffe, Fred J., Millaire, Jean-François, and White, Christine D. 2012 Stable Isotope Biogeochemistry of Seabird Guano Fertilization: Results from Growth Chamber Studies with Maize (Zea mays). PLoS ONE 7(3):e33741.Google Scholar
Stuiver, Minze, and Braziunas, Thomas F. 1993 Modeling Atmospheric 14C Influences and 14C Ages of Marine Samples to 10,000 BC. Radiocarbon 35:137189.Google Scholar
Stuiver, M., and Reimer, P. J. 1993 Extended 14C Database and Revised CALIB Radiocarbon Calibration Program. Radiocarbon 35:215230.Google Scholar
Taché, Karine, and Hart, John P. 2013 Chronometric Hygiene of Radiocarbon Databases for Early Non-Perishable Cooking Vessel Technologies in Northeastern North America. American Antiquity 78:359372.Google Scholar
Tressler, Willis L., Wagner, Laverne G., and Bere, Ruby 1940 A Limnological Study of Chautauqua Lake. II. Seasonal Variation. Transactions of the American Microscopical Society 59:1240.Google Scholar
van der Merwe, Nicholas J. 1982 Carbon Isotopes, Photosynthesis, and Archaeology. American Scientist 70: 596606.Google Scholar
Ward, G. K., and Wilson, S. R. 1978 Procedures for Comparing and Combining Radiocarbon Age Determinations: A Critique. Archaeometry 20:1931.Google Scholar
Warinner, Christina, Garcia, Nelly Robles, and Tuross, Noreen 2013 Maize, Beans and the Floral Isotopic Diversity of Highland Oaxaca, Mexico. Journal of Archaeological Science 40: 868873.Google Scholar
Wu, Xiaohong, Zhang, Chi, Goldberg, Paul, Cohen, David, Pan, Yan, Arpin, Trina, and Bar-Yosef, Ofer 2012 Early Pottery at 20,000 Years Ago in Xianrendong Cave, China. Science 336:16961700.Google Scholar
Yoneda, Minora, Tanaka, Atsushi, Shibata, Yasuyuki, Morita, Masatoshi, Uzawa, Kazuhiro, Hirota, Masashi, and Uchida, Masao 2002 Radiocarbon Marine Reservoir Effect in Human Remains from the Kitakogane Site, Hokkaido, Japan. Journal of Archaeological Science 29:529536.Google Scholar
Yu, Shi-Yong, Shen, Ji, and Colman, Steven M. 2007 Modeling the Radiocarbon Reservoir Effect in Lacustrine Systems. Radiocarbon 49:12411254.Google Scholar
Zigah, Prosper K., Minor, Elizabeth C., and Weme, Josef P. 2012 Radiocarbon and Stable-Isotope Geochemistry of Organic and Inorganic Carbon in Lake Superior. Global Biogeochemical Cycles 26: doi:10.1029/2011GB004132.Google Scholar