Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T09:33:28.562Z Has data issue: false hasContentIssue false

Genealogical and population viability analysis of a conservation nucleus of Brazilian Bergamasca sheep

Published online by Cambridge University Press:  10 June 2014

H. Carneiro
Affiliation:
Faculdade de Agronomia e Medicina Veterinária, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF 70910-900, Brazil
S.R. Paiva
Affiliation:
EMBRAPA Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Avenida W5 Norte (Final), Brasília, DF 70770-900, Brazil
H. Louvandini
Affiliation:
Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, CEP 13416-000, Brazil
R.M. Miranda
Affiliation:
Departamento de Zootecnia, Universidade Federal de Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, CEP 91540-000, Brazil
C. McManus*
Affiliation:
Faculdade de Agronomia e Medicina Veterinária, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF 70910-900, Brazil Departamento de Zootecnia, Universidade Federal de Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, CEP 91540-000, Brazil
*
Correspondence to: C. McManus, Faculdade de Agronomia e Medicina Veterinária, Campus Universitário Darcy Ribeiro, Brasília – DF 70919-900, Brazil. email: concepta@unb.br
Get access

Summary

A genealogical and a viability analysis was carried out on the 1559 available registers for the Conservation Nucleus of Brazilian Bergamasca sheep of the University of Brasilia farm in Brazil using the ENDOG and the Vortex programs. To run the ENDOG it was used the registered data and for the Vortex it was used information obtained by a questionnaire answered by the curators of the herds. Of the animals registered, 767 had known parents, with significantly more dams known at each generation. The number of pedigrees known has increased over the generations, with higher registration of parents of sires than dams. The Computed Mean Inbreeding calculated by ENDOG was 0.29 percent and mean average relatedness was 1.52 percent. Mean Generation interval was 3.71 years with this values being lower for sires than dams. The population probability of extinction, calculated by Vortex was 17 percent and the average time to extinction was 59 years. Forty-two additional scenarios were created to determine which factors most threaten these populations which were frequency of catastrophes, lack of animal entrance and adult and lamb mortalities, especially adult female mortality. These results indicate that future breeding plans should include exchange of sires between farms to maintain low inbreeding levels and increase genetic variability and upgrade the management to control the mortality rates of animals.

Résumé

Une analyse généalogique et de viabilité a été réalisée avec les 1559 enregistrements disponibles au Centre de Conservation de la race ovine Bergamasca Brésilienne de l'Université de Brasilia (Brésil), en utilisant les logiciels ENDOG et Vortex. Les données des enregistrements ont été utilisées pour travailler avec le logiciel ENDOG alors que l'information traitée par le logiciel Vortex avait été obtenue au moyen d'un questionnaire auquel ont répondu les personnes prenant soin des troupeaux. Pour 767 des animaux enregistrés, les parents étaient connus, avec le nombre de femelles connues étant significativement plus élevé à chaque génération. Le nombre de généalogies connues a augmenté au fil des générations, grâce à un enregistrement plus fréquent des parents des mâles. La Consanguinité Moyenne a été estimée par ENDOG à 0,29 pour cent alors que la Parenté Moyenne a été de 1,52 pour cent. L'Intervalle Générationnel Moyen a été de 3,71 ans, avec l'intervalle étant plus court chez les mâles que chez les femelles. La probabilité d'extinction de la population a été de 17 pour cent d'après Vortex et le temps moyen d'extinction a été de 59 ans. Quarante-deux scénarios additionnels ont été créés pour déterminer quels sont les facteurs menaçant le plus ces populations. Ceux-ci ont été: la fréquence de catastrophes, le manque de renouvellement des animaux et la mortalité des adultes et des agneaux, notamment la mortalité des femelles adultes. Ces résultats indiquent que les futurs plans de sélection devraient envisager l'échange de mâles entre les fermes afin de maintenir bas les niveaux de consanguinité et d'accroître la variabilité génétique. Il faudrait, de même, améliorer la gestion des exploitations dans le but de contrôler le taux de mortalité des animaux.

Resumen

Se realizó un análisis genealógico y de viabilidad con los 1559 registros disponibles en el Núcleo de Conservación de la raza ovina Bergamasca Brasileña, de la Universidad de Brasilia (Brasil), usando los programas ENDOG y Vortex. En el programa ENDOG se trabajó con los datos de los registros mientras que en el programa Vortex se usó la información obtenida mediante un cuestionario al que respondieron los encargados del cuidado de los rebaños. De los animales inscritos, se conocían los progenitores de 767, con un número significativamente mayor de hembras conocidas en cada generación. El número de genealogías conocidas ha aumentado a lo largo de las generaciones, gracias a un mayor registro de los progenitores de los machos. La Consanguinidad Media calculada por ENDOG fue de 0,29 por ciento mientras que el Parentesco Medio fue de 1,52 por ciento. El Intervalo Generacional Medio fue de 3,71 años, siendo este dato menor para los machos que para las hembras. La probabilidad de extinción de la población, calculada por Vortex, fue del 17 por ciento y el tiempo medio hasta la extinción de 59 años. Se recrearon 42 escenarios adicionales para determinar cuáles son los factores que, en mayor medida, amenazan a estas poblaciones. Éstos resultaron ser: la frecuencia de catástrofes, la falta de reposición de los animales y la mortalidad de los adultos y de los corderos, en especial la mortalidad de las hembras adultas. Estos resultados indican que los futuros planes de selección deberían contemplar el intercambio de machos entre las granjas para mantener bajos los niveles de consanguinidad e incrementar la variabilidad genética. Asimismo, se debería mejorar el manejo de las explotaciones para controlar las tasas de mortalidad de los animales.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adán, S., Fernández, M., Justo, J.R., Rivero, C.J., Rois, D. & Lama, J. 2007. Análisis de la información genealógica en la raza ovina ovella galega. Arch Zootec., 56: 587592.Google Scholar
Alderson, L. 1990. Genetic conservation of domestic livestock. Wallin, CAB International, US page.Google Scholar
Alfonso, L., Parada, A., Legarra, A., Ugarte, E. & Arana, A. 2006. Effects on geneticvariability of selection against scrapie sensitivity in the Latxa black-faced sheep. Genet. Sel. Evol., 38: 495511.Google Scholar
Álvarez, I., Fernández, I., Espinhosa, M.A., Payeras, L., Gutiérrez, J.P., Royo, L.J. & Goyache, F. 2007. Análisis del libro genealógico de la raza ovina mallorquina. In Proceedings SEOC 2007. pp. 163–166. (available at http://www.exopol.com/seoc/docs/6t02xe4o.pdf)Google Scholar
Armstrong, E., Postiglioni, A. & Gonzáles, S. 2006. Population viability analysis of the Uruguayan Creole cattle genetic reserve. Anim. Genet. Resour. Inf., 38: 1933.Google Scholar
Ballou, J., Lacy, B. & Miller, P. 2005. Population and Habitat Viability Assessment (PHVA): Briefing Book. I Maned Wolf International Workshop – CENAP/IBAMA, Atibaia, SP, Brazil.Google Scholar
Brook, B.W., Lim, L., Harden, R. & Frankham, R. 1997. How secure is the Lord Howe Island woodhen? A population viability analysis using Vortex. Pacific Conserv. Biol., 3: 125133.Google Scholar
Dalvit, C., De Marchi, M., Zanetti, E. & Cassandro, M. 2009. Genetic variation and population structure of Italian native sheep breeds undergoing in situ conservation. J. Anim. Sci., 87: 38373844.Google Scholar
Fieberg, J. & Ellner, S.P. 2000. When is it meaningful to estimate an extinction probability? Ecology, 81: 20402047.Google Scholar
Frankham, R., Ballou, J.D. & Briscoe, D.A. 2008. Genética e extinção; Conseqüências genéticas do tamanho populacional pequeno. In: Fundamentos de Genética da Conservação, pp. 77–101. Ribeirão Preto, Sociedade Brasileira de Genética.Google Scholar
Gandini, G.C., Ollivier, L., Danell, B., Distl, O., Georgoudis, A., Groeneveld, A., Martyniuk, E., Van Arendonk, J.A.M. & Woolliams, J.A. 2004. Criteria to assess the degree of endangerment of livestock breeds in Europe. Livestock Prod. Sci., 91: 173182.Google Scholar
Goyache, F., Gutiérrez, J.P., Álvarez, I., Fernández, I., Royo, L.J. & Gomez, E. 2003. Genetic analysis of calf survival at different preweaning ages in beef cattle. Livestock Prod. Sci., 83: 1320.Google Scholar
Goyache, F., Fernández, I., Espinosa, M.A., Payeras, L., Pérez-Pardal, L., Gutiérrez, J.P., Royo, L.J. & Álvarez, I. 2010. Análise demográfico y genetic de la raza ovina Mallorquina. ITEA, 106: 314.Google Scholar
Gutiérrez, J.P. & Goyache, F. 2005. A note on ENDOG: a computer program for analysing pedigree information. J. Anim. Breeding Genet., 122: 172176.Google Scholar
Gutiérrez, J.P., Altarriba, J., Díaz, C., Quintanilla, R., Cañón, J. & Piedrafita, J. 2003. Pedigree analysis of eight Spanish beef cattle breeds. Genet. Sel. Evol., 35: 4363.Google Scholar
Gutiérrez, J.P., Royo, L.J., Àlvarez, I. & Goyache, F. 2005. Molkin v. 2.0: a computer program for genetic analysis of populations using molecular coancestry information. J. Hered., 96: 718721.Google Scholar
Hall, S.J. & Ruane, J. 1993. Livestock breeds and their conservation: a global overview. Conserv. Biol., 7: 815825.Google Scholar
Harris, R.B., Maguire, L.A. & Shaffer, M.L. 1987. Samples sizes for minimum viable population estimation. Conserv. Biol., 1: 7276.Google Scholar
Hermuche, P., Silva, N.C., Guimarães, R.F., Carvalho Júnior, O.A., Paiva, S.R., Gomes, R.A.T. & McManus, C.M. 2012. Dynamics of sheep production in Brazil using principal components and maps of auto-organization characteristics. Rev. Bras. Cart., 64: 821832.Google Scholar
Hermuche, P., Maranhão, R.L.A., Guimarães, R.F., Carvalho Júnior, O.A., Gomes, R.A.T., Paiva, S.R. & McManus, C.M. 2013. Dynamics of Sheep Production in Brazil. ISPRS Int. J. Geo-Info., 2: 665679.Google Scholar
Huby, M., Griffon, L., Moureaux, S., De Rochambeau, H., Burge, C.D. & Verrier, E. 2003. Genetic variability of six French meat sheep breeds in relation to their genetic management. Genet. Sel. Evol., 35: 637655.Google Scholar
Keith, D.A., Akçakaya, R., Thuiller, W., Midgley, G.F., Pearson, R.G., Phillips, S.J., Regan, H.M., Araújo, M.B. & Rebelo, T.G. 2008. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol. Lett., 4: 560563.Google Scholar
Lacy, R.C. 1987. Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv. Biol., 1: 143158.CrossRefGoogle Scholar
Lacy, R.C. 1989. Analysis of founder representation in pedigrees: founder equivalents and founder genome equivalents. Zoo Biol., 8: 111123.CrossRefGoogle Scholar
Lindenmayer, D.B., Lacy, R.C. & Pope, M.L. 2000. Testing a simulation model for population viability analysis. Ecol. Appl., 10: 580597.Google Scholar
Luhken, G., Buschmann, A., Brandt, H., Eiden, M., Groschup, M.H. & Erhardt, G. 2007. Epidemiological and genetical differences between classical and atypical scrapie cases. Veter. Res., 38: 6580.Google Scholar
Miller, P.S. & Lacy, R.C. 2005. Vortex useŕs manual. A stochastic simulation of the extinction process. Chicago Zoological Society, Chicago.Google Scholar
Mills, L.S. & Allendorf, F.W. 1996. The one-migrant-per-generation rule in conservation management. Conserv. Biol., 10: 15091518.CrossRefGoogle Scholar
Miranda, R.M. & McManus, C. 2000. Desempenho de ovinos Bergamácia na região de Brasília. Rev. Brasil. Zootec., 29: 16611666.CrossRefGoogle Scholar
Moureaux, S., Verrier, É., Ricard, A. & Mériaux, J.C. 1996. Genetic variability within French race and riding horse breeds from genealogical data and blood marker polymorphisms. Genet. Sel. Evol., 28: 83102.Google Scholar
Notter, D.R. 1999. The Importance of genetic diversity in livestock populations of the future. J. Anim. Sci., 77: 6169.Google Scholar
Paiva, S., Silvério, V.C., Egito, A.A., McManus, C., Faria, D.A., Mariante, A.S., Castro, S.R., Albuquerque, M.S.M. & Dergam, J.A. 2005. Genetic variability of the Brazilian hair sheep breeds. Pesquisa Agropecuária Brasil., 40: 887893.Google Scholar
Sabbioni, A., Valentino, B., Francesca, T.M. & Paola, S. 2007. Genetic variability and population structure in the Italian Haflinger Horse from pedigree analysis. Ann. Facoltà Med. Veterin. Parma., 27: 199210.Google Scholar
Scherf, B.D. 2000. World watch list for domestic animal diversity, Third edition. Rome, Food and Agricultural Organization of the United Nations.Google Scholar
Toro, M.A. & Caballero, A. 2005. Characterization and conservation of genetics diversity in subdivided populations. Phil. Trans. R. Soc. B, 360: 13671378.Google Scholar