Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T18:34:44.535Z Has data issue: false hasContentIssue false

Genetic diversity between Italian and Greek buffalo populations

Published online by Cambridge University Press:  01 August 2011

B. Moioli*
Affiliation:
Istituto Sperimentale per la Zootecnia, via Salaria 31, 00016 Monterotondo, Italy
A. Georgoudis
Affiliation:
Dept. of Animal Production, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece
F. Napolitano
Affiliation:
Istituto Sperimentale per la Zootecnia, via Salaria 31, 00016 Monterotondo, Italy
G. Catillo
Affiliation:
Istituto Sperimentale per la Zootecnia, via Salaria 31, 00016 Monterotondo, Italy
S. Lucioli
Affiliation:
Istituto Sperimentale per la Zootecnia, via Salaria 31, 00016 Monterotondo, Italy
Ch. Ligda
Affiliation:
Dept. of Animal Production, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece
J. Boyazoglu
Affiliation:
Dept. of Animal Production, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece
*
* Tel.: +39–06–900901; Fax: +39 06 9061541 E-mail address: isz@flashnet.it
Get access

Summary

The present study is a first step of a global project aiming at the estimation of the genetic distances and relationships among buffalo breeds and sub-populations and the investigation of the production potential and adaptability of different buffalo genotypes in various environments.

Genetic diversity of Italian and Greek buffalo populations was estimated on the basis of allele frequencies at nine polymorphic microsatellite loci: CSSM43, CSSM38, DRB3, D21S4, CYP21, CSSM47, CSSM60, CSSM36 and CSSM33. The number of detected alleles per locus varied from two (D21S4) to thirteen (CSSM47). Allele frequency distribution was similar in the two populations, which have the same alleles at the highest frequency at all loci, except loci CSSM47 and CSSM60. Average gene diversity over all loci was 0.60. Across-loci average gene diversity increased with the number of alleles. Observed average heterozygosity was 0.167 and 0.177 in the Italian and Greek populations, respectively. The degree of differentiation between Italian and Greek buffalo was moderate and estimated at 0.021 ± 0.009.

Resumen

El presente estudio representa un primer paso dentro de un proyecto global orientado a la estimación de las distancias genéticas y relaciones entre las razas de búfalos y las sub poblaciones y la investigación sobre la producción potencial y la adaptabilidad de los distintos genotipos de búfalos en condiciones ambientales diversas.

La diversidad genética de las poblaciones italianas y griegas de búfalos fue estimada en base a las frecuencias de alelos en nuevo loci microsatélites polimórficos: CSSM43, CSSM38, DRB3, D21S4, CYP21, CSSM47, CSSM60, CSSM36 y CSSM33. El número de alelos detectados por locus varió de dos (D21S4) a trece (CSSM47). La distribución de la frecuencia de los alelos fue similar en las dos poblaciones, que poseen los mismos alelos en la frecuencia más alta en todos los loci, excepto los loci CSSM47 y CSSM60.

La media de diversidad de genes en todos los loci fue de 0,60. Entre los loci la media de diversidad de genes aumentó con el número de alelos. La media observada de heterocigosidad fue de 0,167 y 0,177, en las poblaciones italianas y griegas respecitvamente. El nivel de diferenciación entre el búfalo italiano y griego fue estimado en 0,021±0,009.

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, J. S. F., Moore, S. S., Hetzel, D. J. S., Evans, D., Tan, S. G. & Byrne, K. 1997. Genetic diversity of Asian water buffalo: microsatellite variation and a comparison with protein-coding loci. Anim. Genet. 28, 103115.CrossRefGoogle Scholar
Bhat, P. N. 1992. Genetics of River Buffaloes. In Tulloh, N. M. & Holmes, J. H. G. (Eds), “Buffalo Production”, Elsevier, pp. 1358.Google Scholar
Boyazoglu, J. 1996. Growing interest in the Water Buffalo: A short bibliographic update. Animal Genetic Resources Information 19, 716.CrossRefGoogle Scholar
Boyazoglu, J. 1999. Mediterranean systems of production. In “The world of pastoralism”. Guilford Press, new York (USA), pp. 353393.Google Scholar
Boyazoglu, J. & Flamant, J. C. 1990. Livestock production systems and local animal genetic resources with special reference to the Mediterranean Region, 7thCongress of the Mediterranean Federation for Ruminant Health & Production, Santarem, Portugal, 22–24 April, 1999, 3140.Google Scholar
Cockrill W., Ross (Ed.), 1974. The Husbandry and Health of Domestic Buffalo. FAO, Rome, pp. 650.Google Scholar
Cockrill W., Ross, 1984. Water Buffalo. In Mason, I. L. (Eds), Evolution of Domesticated Animals, Longman, pp. 5263.Google Scholar
Comincini, S., Leone, P., Redaelli, L., DeGiuli, L., Zhang, Y. & Ferretti, L. 1995. Characterization of bovine microsatellites by silver staining. J. Anim. Breed. Genet. 112, 415420.CrossRefGoogle Scholar
FAO. 1998. Secondary Guidelines for Development of Farm Animal Genetic Resources Management Plans, Measurement of Domestic Animal Diversity (MoDAD), Rome, 2529.Google Scholar
Georgoudis, A. G., Ligda, Ch. & Boyazoglu, J. 1994. Population characteristics of water buffaloes in Greek wetlands. Anim. Genet. Res. 14, 8395.Google Scholar
Georgoudis, A. G., Papanastasis, V. P. & Boyazoglu, J. G. 1998. Use of water buffalo for the environmental conservation of waterland. Review. 8th World Conference on Animal Production, Seoul, Korea, 341350.Google Scholar
Goudet, J. 1995. FSTAT, Version 1.2: A computer program to calculate F-statistics. J. Heredity 86, 485486.CrossRefGoogle Scholar
Hammond, K. 1998. Development of the global strategy for the management of farm animal genetic resources. Proc. of the 6th World Congress on Genetics Applied to Livestock Production. Armidale, Australia, 11–16 January 1998. Vol 28, 4350.Google Scholar
Hartl, D. 1980. Principles of population genetics. Sinauer Associates Inc., Sunderland, Massachusset, USA, 164165.Google Scholar
Loftus, R. T., Machugh, D. E., Bradley, D. G., Sharp, P. M. & Cunningham, P. 1994. Evidence for two independent domestications of cattle. Proc. Natl. Acad. Sci., 91: 27572761.CrossRefGoogle ScholarPubMed
Mahadevan, P. 1992. Distribution, Ecology and Adaptation. In “Buffalo Production”, Tulloh, N. M. and Holmes, J. H. G. (Eds), Elsevier, pp. 112.Google Scholar
Matassino, D. & Moioli, B. 1996. The genetic improvement and the germplasm conservation for quality. Proc. Int. Symp. on Buffalo Products. Paestum, 1–4 December 1994. EAAP Publication no. 82, 131144.Google Scholar
Moore, S., Evans, D. & Byrne, K. 1995. A set of polymorphic DNA microsatellites useful in swamp and river buffalo. Animal Genetics 26, 355359.CrossRefGoogle ScholarPubMed
Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Nat. Ac. Sci. USA 70, 33213323.CrossRefGoogle ScholarPubMed
Pilla, A. & Moioli, B. M. 1992. Genetic evaluation of buffalo for milk production with an Animal Model. Zoot. Nutr. Anim., 18, 207218.Google Scholar
Rossi, G., Moioli, B. M. & Borghese, A. 1998. Buffalo farming: present situation and perspectives. I Georgofili, Quaderni, IV, Studio Editoriale Fiorentino, Firenze, Italy, 3769Google Scholar
Vaz Portugal, A., Pires da Costa, J., Mira, J. F. & Cortes Martins, L. (Eds). Proc. of the 7th Congress of the Mediterranean Federation for Ruminant Health and Production, Santarem, Portugal, 22–24 April 1999, 1926.Google Scholar
Wright, S. 1943. Isolation by distance. Genetics 28, 114138.CrossRefGoogle ScholarPubMed
Wright, S. 1951. The genetical structure of populations. Ann. Eugen. 15, 323354.CrossRefGoogle ScholarPubMed