Skip to main content Accessibility help
×
×
Home

Metal acquisition and virulence in Brucella

  • R. Martin Roop (a1)
Abstract

Similar to other bacteria, Brucella strains require several biologically essential metals for their survival in vitro and in vivo. Acquiring sufficient levels of some of these metals, particularly iron, manganese and zinc, is especially challenging in the mammalian host, where sequestration of these micronutrients is a well-documented component of both the innate and acquired immune responses. This review describes the Brucella metal transporters that have been shown to play critical roles in the virulence of these bacteria in experimental and natural hosts.

Copyright
Corresponding author
Corresponding author. E-mail: roopr@ecu.edu
References
Hide All
Alix, E and Blanc-Potard, JB (2007). MgtC: a key player in intramacrophage survival. Trends in Microbiology 15: 252256.
Almirón, M and Ugalde, RA (2010). Iron homeostasis in Brucella abortus: the role of bacterioferritin. Journal of Microbiology 48: 668673.
Anderson, ES, Paulley, JT, Gaines, JM, Valderas, MW, Martin, DW, Menscher, E, Brown, TD, Burns, CS and Roop, RM II (2009). The manganese transporter MntH is a critical virulence determinant for Brucella abortus 2308 in experimentally infected mice. Infection and Immunity 77: 34663474.
Anderson, ES, Paulley, JT, Martinson, DA, Gaines, JM, Steele, KH and Roop, RM II (2011). The iron-responsive regulator Irr is required for the wild-type expression of the gene encoding the heme transporter BhuA in Brucella abortus 2308. Journal of Bacteriology 193: 53595364.
Anderson, ES, Paulley, JT and Roop, RM II (2008). The AraC-like transcriptional regulator DhbR is required for maximum expression of the 2,3-dihydroxybenzoic acid biosynthesis genes in Brucella abortus 2308 in response to iron deprivation. Journal of Bacteriology 190: 18381842.
Anderson, GJ and Vulpe, CD (2009). Mammalian iron transport. Cellular and Molecular Life Sciences 66: 32413261.
Anderson, JD and Smith, H (1965). The metabolism of erythritol by Brucella abortus. Journal of General Microbiology 38: 109124.
Anderson, TD, Cheville, NF and Meador, VP (1986). Pathogenesis of placentitis in the goat inoculated with Brucella abortus. II. Ultrastructural studies. Veterinary Pathology 23: 227239.
Andreini, C, Banci, L, Bertini, I and Rosato, A (2006). Zinc through the three domains of life. Journal of Proteome Research 5: 31733178.
Anjem, A, Varghese, S and Imlay, JA (2009). Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Molecular Microbiology 72: 844858.
Archibald, F (1983). Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiology Letters 19: 2932.
Ariza, J, Bosilkovski, M, Cascio, A, Colmenero, JD, Corbel, MJ, Falagas, ME, Memish, ZA, Roushan, MRH, Rubinstein, E, Sipsas, NV, Solera, J, Young, EJ and Pappas, G (2007). Perspectives for the treatment of brucellosis in the 21st century: the Ioannina recommendations. PLoS Medicine 4: e317.
Bandara, AB, Contreras, A, Contreras-Rodriguez, A, Martins, AM, Dobrean, V, Poff-Reichow, S, Rajasekaran, P, Sriranganathan, N, Schurig, G and Boyle, SM (2007). Brucella suis urease encoded by ure1 but not ure2 is necessary for intestinal infection of mice. BMC Microbiology 7: 57.
Batut, J, Andersson, SGE and O'Callaghan, D (2004). The evolution of chronic infection strategies in the α-proteobacteria. Nature Reviews Microbiology 2: 933945.
Bellaire, BH (2001). Production of the siderophore 2,3-dihydroxybenzoic acid by Brucella abortus is regulated independent of Fur and is required for virulence in cattle. Doctoral dissertation, Louisiana State University Health Sciences Center, Shreveport,Louisiana, USA
Bellaire, BH, Baldwin, CL, Elzer, PH and Roop, RM II (2000). The siderophore 2,3-dihydroxybenzoic acid contributes to the virulence of Brucella abortus in ruminants. Abstracts of the 100th General Meeting of the American Society for Microbiology, Abstract B-17, page 44.
Bellaire, BH, Elzer, PH, Baldwin, CL and Roop, RM II (1999). The siderophore 2,3-dihydroxybenzoic acid is not required for virulence of Brucella abortus in BALB/c mice. Infection and Immunity 67: 26152618.
Bellaire, BH, Elzer, PH, Baldwin, CL and Roop, RM II (2003b). Production of the siderophore 2,3-dihydroxybenzoic acid is required for wild-type growth of Brucella abortus in the presence of erythritol under low-iron conditions in vitro. Infection and Immunity 71: 29272932.
Bellaire, BH, Elzer, PH, Hagius, S, Walker, J, Baldwin, CL and Roop, RM II (2003a). Genetic organization and iron-responsive regulation of the Brucella abortus 2,3-dihydroxybenzoic acid biosynthesis operon, a cluster of genes required for wild-type virulence in pregnant cattle. Infection and Immunity 71: 17941803.
Blasco, JM (2003). Epididymite contagieuse du belier ou infection à Brucella ovis. In: Lefevre, PC, Blancou, J and Chermette, R (eds) Principales Maladies Infectieuses et Parasitaires du Bétail. Paris: Lavoiser, pp. 905917.
Bratosin, D, Mazurier, J, Tissier, JP, Estaquier, J, Huart, JJ, Amiesen, JC, Aminoff, D and Montreuil, J (1998). Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. Biochimie 80: 173195.
Byrd, TF and Horwitz, MA (1989). Interferon gamma-activated human monocytes down-regulate transferrin receptors and inhibit intracellular multiplication of Legionella pneumophila by limiting the availability of iron. Journal of Clinical Investigation 83: 14571465.
Celli, J, de Chastellier, C, Franchini, DM, Pizarro-Cerdá, J, Moreno, E and Gorvel, JP (2003). Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. Journal of Experimental Medicine 198: 545556.
Celli, J, Salcedo, SP and Gorvel, JP (2005). Brucella coopts the small GTPase Sar1 for intracellular replication. Proceedings of the National Academy of Sciences USA 102: 16731678.
Cellier, MF, Courville, P and Campion, C (2007). Nramp1 phagocyte intracellular metal withdrawal defense. Microbes and Infection 9: 16621670.
Corbel, MJ (1997). Brucellosis: an overview. Emerging Infectious Diseases 3: 213221.
Corbin, BD, Seeley, EH, Raab, A, Feldmann, J, Miller, MR, Torres, VJ, Anderson, KL, Dattilo, BM, Dunman, PM, Gerads, R, Caprioli, RM, Nacken, W, Chazin, WJ and Skaar, EP (2008). Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319: 962965.
Clapp, B, Skyberg, JA, Yang, X, Thornburg, T, Walters, N and Pascual, DW (2011). Protective live oral brucellosis vaccines stimulate Th1 and Th17 cell responses. Infection and Immunity 79: 41654174.
Crichton, RR (2009). Iron Metabolism – from Molecular Mechanisms to Clinical Consequences. 3rd edn. West Sussex, UK: John Wiley & Sons.
Danese, I (2001). Contribution à l’étude de l'assimilation du fer chez Brucella melitensis 16M. Doctoral dissertation, Facultes Universitaires Notre-Dame de la Paix, Namur.
Dawson, CE, Stubblefield, EJ, Perrett, LL, King, AC, Whatmore, AM, Bashiruddin, JB, Stack, JA and MacMillan, AP (2008). Phenotypic and molecular characterization of Brucella isolates from marine mammals. BMC Microbiology 8: 224.
Denoel, PA, Crawford, RM, Zygmunt, MS, Tibor, A, Weynants, VE, Godfroid, F, Hoover, DL and Letesson, JJ (1997). Survival of a bacterioferritin deletion mutant of Brucella melitensis 16M in human monocyte-derived macrophages. Infection and Immunity 65: 43374340.
Denoel, PA, Zygmunt, MS, Weynants, V, Tibor, A, Lichtfouse, B, Briffeuil, P, Limet, JN and Letesson, JJ (1995). Cloning and sequencing of the bacterioferritin gene of Brucella melitensis 16M strain. FEBS Letters 361: 238242.
Detilleux, PG, Deyoe, BL and Cheville, NF (1990). Entry and intracellular localization of Brucella spp. in Vero cells: fluorescence and electron microscopy. Veterinary Pathology 27: 317328.
Dozot, M, Boigegrain, RA, Delrue, RM, Hallez, R, Ouahrani-Bettache, S, Danese, I, Letesson, JJ, De Bolle, X and Köhler, S (2006). The stringent response mediator Rsh is required for Brucella melitensis and Brucella suis virulence, and for expression of the type IV secretion system virB. Cellular Microbiology 8: 17911802.
Enright, FM (1990). The pathogenesis and pathobiology of Brucella infections in domestic animals. In: Nielsen, KH and Duncan, JR (eds) Animal Brucellosis. Boca Raton, FL: CRC Press, pp. 301320.
Evenson, MA and Gerhardt, P (1955). Nutrition of brucellae: utilization of iron, magnesium and manganese for growth. Proceedings of the Society for Experimental Biology and Medicine 89: 678680.
Franz, DR, Jahrling, PB, Friedlander, AM, McClain, DJ, Hoover, DL, Bryne, WR, Pavlin, JA, Christopher, GW and Eitzen, EM (1997). Clinical recognition and management of patients exposed to biological warfare agents. Journal of the American Medical Association 278: 399411.
Gary, ND, Kupferberg, LL and Graf, LH (1955). Demonstration of an iron-activated aldolase in sonic extracts of Brucella suis. Journal of Bacteriology 69: 478479.
Gee, JM, Valderas, MW, Kovach, ME, Grippe, VL, Robertson, GT, Ng, W-L, Richardson, JM, Winkler, ME and Roop, RM II (2005). The Brucella abortus Cu,Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice. Infection and Immunity 73: 28732880.
Gerhardt, P (1958). The nutrition of brucellae. Bacteriological Reviews 22: 8198.
González-Carreró, MI, Sangari, FJ, Agüero, J and García-Lobo, JM (2002). Brucella abortus 2308 produces brucebactin, a highly efficient catecholic siderophore. Microbiology 148: 353360.
Griffiths, E (1999). Iron in biological systems. In: Bullen, JJ and Griffiths, E (eds) Iron and Infection. Molecular, Physiological and Clinical Aspects, 2nd edn. New York: John Wiley & Sons, pp. 125.
Günzel, D, Kucharski, LM, Kehres, DG, Romero, MF and Maguire, ME (2006). The MgtC virulence factor of Salmonella enterica serovar Typhimurium activates Na+,K+-ATPase. Journal of Bacteriology 188: 55865594.
Jain, N, Rodriquez, AC, Kimsawatde, G, Seleem, MN, Boyle, SM and Sriranganathan, N (2011). Effect of entF deletion on iron acquisition and erythritol metabolism by Brucella abortus 2308. FEMS Microbiology Letters 316: 16.
Jubier-Maurin, V, Rodrique, A, Ouahrani-Bettache, S, Layssac, M, Mandrand-Berthelos, MA, Köhler, S and Liautard, JP (2001). Identification of the nik gene cluster of Brucella suis: regulation and contribution to urease activity. Journal of Bacteriology 183: 426434.
Kehl-Fie, TE and Skaar, EP (2010). Nutritional immunity beyond iron: a role for manganese and zinc. Current Opinion in Chemical Biology 14: 218224.
Kim, S, Watanabe, K, Shirahata, T and Watarai, M (2004). Zinc uptake system (znuA locus) of Brucella abortus is essential for intracellular survival and virulence in mice. Journal of Veterinary Medical Science 66: 10591063.
Lavigne, JP, O'Callaghan, D and Blanc-Potard, AB (2005). Requirement of MgtC for Brucella suis intramacrophagic growth: a potential mechanism shared by Salmonella enterica and Mycobacterium tuberculosis for adaptation to a low-Mg2+ environment. Infection and Immunity 73: 31603163.
Lestrate, P, Delrue, RM, Danese, I, Didembourg, C, Taminiau, B, Mertens, P, De Bolle, X, Tibor, A, Tang, CM and Letesson, JJ (2000). Identification and characterization of in vivo attenuated mutants of Brucella melitensis. Molecular Microbiology 38: 543551.
LeVier, K, Phillips, RW, Grippe, VK, Roop, RM II and Walker, GC (2000). Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science 287: 24922493.
Li, Y and Zamble, DR (2009). Nickel homeostasis and nickel regulation: an overview. Chemical Reviews 109: 46174643.
Lopez, M, Köhler, S and Winum, JY (2012). Zinc metalloenzymes as new targets against the bacterial pathogen Brucella. Journal of Inorganic Biochemistry (in press).
López-Goñi, I and Moriyón, I (1995). Production of 2,3-dihydroxybenzoic acid by Brucella species. Current Microbiology 31: 291293.
López-Goñi, I, Moriyón, I and Neilands, JB (1992). Identification of 2,3-dihydrobenzoic acid as a Brucella abortus siderophore. Infection and Immunity 60: 44964503.
Lucero, NE, Corazza, R, Almuzara, MN, Reynes, E, Escobar, GI, Boeri, E and Ayala, SM (2010). Human Brucella canis outbreak linked to infection in dogs. Epidemiology and Infection 138: 280285.
Martin, DW, Baumgartner, JE, Gee, JM, Anderson, ES and Roop, RM II (2012). SodA is a major metabolic antioxidant in Brucella abortus 2308 that plays a significant, but limited, role in the virulence of this strain in the mouse model. Microbiology, published online May 3, 2012, doi:10.1099/mic.0.059584-0.
Martínez, J, Ugalde, RA and Almirón, M (2005). Dimeric Brucella abortus Irr protein controls its own expression and binds heme. Microbiology 151: 34273433.
Martínez, J, Ugalde, RA and Almirón, M (2006). Irr regulates brucebactin and 2,3-dihydroxybenzoic acid biosynthesis, and is implicated in the oxidative stress resistance and intracellular survival of Brucella abortus. Microbiology 152: 25912598.
McCullough, WG, Mills, RC, Herbst, EJ, Roessler, WG and Brewer, CR (1947). Studies on the nutritional requirements of Brucella suis. Journal of Bacteriology 53: 5–15.
Menscher, EA, Caswell, CC, Anderson, ES and Roop, RM II (2012). Mur regulates the gene encoding the manganese transporter MntH in Brucella abortus 2308. Journal of Bacteriology 194: 561566.
Meyer, ME (1967). Metabolic characterization of the genus Brucella. VI. Growth stimulation by i-erythritol compared with strain virulence for guinea pigs. Journal of Bacteriology 93: 996–1000.
Moomaw, AS and Maguire, ME (2008). The unique nature of Mg2+ channels. Physiology (Bethesda) 23: 275285.
Moreno, E, Stackenbrandt, E, Dorsch, M, Wolters, J, Busch, M and Mayer, H (1990). Brucella abortus 16S rRNA and lipid A reveal a phylogenetic relationship with members of the alpha-2 subdivision of the class Proteobacteria. Journal of Bacteriology 172: 35693576.
Nairz, M, Schroll, A, Sonnweber, T and Weiss, G (2010). The struggle for iron – a metal at the host-pathogen interface. Cellular Microbiology 12: 16911702.
Nairz, M, Theurl, I, Ludwiczek, S, Theurl, M, Mair, SM, Fritsche, G and Weiss, G (2007). The co-ordinated regulation of iron homeostasis in murine macrophages limits the availability of iron for intracellular Salmonella Typhimurium. Cellular Microbiology 9: 21262140.
Nemeth, E, Tuttle, MS, Powelson, J, Vaughn, MB, Donovan, A, Ward, DM, Ganz, T and Kaplan, J (2004). Hepcidin regulates iron efflux by binding to ferroportin and inducing its internalization. Science 306: 20902093.
Nicoletti, P, Lenk, RP, Popescu, MC and Swenson, CE (1989). Efficacy of various treatment regimens, using liposomal streptomycin in cows with brucellosis. American Journal of Veterinary Research 50: 10041007.
Nymo, IH, Tryland, N and Godfroid, J (2011). A review of Brucella infection in marine mammals, with special emphasis on Brucella pinnipedialis in the hooded seal (Cystophora cristata). Veterinary Research 42: 93.
O'Callaghan, D, Cazevieille, C, Allardet-Servent, A, Boschiroli, ML, Bourg, G, Foulongne, V, Frutos, P, Kulakov, Y and Ramuz, M (1999). A homologue of the Agrobacterium tumefaciens VirB and Bordetella Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Molecular Microbiology 33: 2110–1220.
O'Callaghan, D and Whatmore, AM (2011). Brucella genomics as we enter the multi-genomeera. Briefings in Functional Genomics 10: 334341.
Papp-Wallace, KM and Maguire, ME (2006). Manganese transport and the role of manganese in virulence. Annual Review of Microbiology 60: 187209.
Pappas, G, Panagopoulou, P, Christou, L and Tsianos, EV (2006). The new global map of human brucellosis. Lancet Infectious Diseases 6: 9199.
Parent, MA, Bellaire, BH, Murphy, EA, Roop, RM II, Elzer, PH and Baldwin, CL (2002). Brucella abortus siderophore 2,3-dihydroxybenzoic acid (2,3-DHBA) facilitates intracellular survival of the bacteria. Microbial Pathogenesis 32: 239248.
Paulley, JT, Anderson, ES and Roop, RM II (2007). Brucella abortus requires the heme transporter BhuA for maintenance of chronic infection in BALB/c mice. Infection and Immunity 75: 52485254.
Pizzaro-Cerdá, J, Méresse, S, Parton, RG, van der Goot, G, Sola-Landa, A, López-Goñi, I, Moreno, E and Gorvel, JP (1998). Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infection and Immunity 66: 57115724.
Posey, JE and Gherardini, FC (2000). Lack of a role for iron in the Lyme disease pathogen. Science 288: 16511653.
Puri, S and O'Brian, MR (2008). The hmuQ and hmuD genes from Bradyrhizobium japonicum encode heme-degrading enzymes. Journal of Bacteriology 188: 64766482.
Raymond, KN and Dertz, EA (2004). Biochemical and physical properties of siderophores. In: Crosa, JH, Mey, AR and Payne, SM (eds) Iron Transport in Bacteria. Washington: ASM Press, pp. 3–17.
Rodionov, DA, Gelfand, MS, Todd, JD, Curson, ARJ and Johnston, AWB (2006). Computational reconstruction of iron- and manganese-responsive transcriptional networks in α- proteobacteria. PLoS Computational Biology 2: 15681585.
Roop, RM II, Anderson, E, Ojeda, J, Martinson, D, Menscher, E and Martin, DW (2011). Metal acquisition by Brucella strains. In: López-Goñi, I and O'Callaghan, D (eds) Brucella: Molecular Microbiology and Genetics. Norfolk: Caister Academic Press, pp. 179199.
Roop, RM II, Gaines, JM, Anderson, ES, Caswell, CC and Martin, DW (2009). Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host. Medical Microbiology and Immunology 198: 221238.
Sanders, TH, Higuchi, K and Brewer, CR (1953). Studies on the nutrition of Brucella melitensis. Journal of Bacteriology 66: 294299.
Sangari, FJ, Cayón, AM, Seoane, A and García-Lobo, JM (2010). Brucella abortus ure2 region contains an acid-activated urea transporter and a nickel transport system. BMC Microbiology 10: 107.
Sangari, FJ, Seoane, A, Rodríguez, MC, Agüero, J and García-Lobo, JM (2007). Characterization of the urease operon of Brucella abortus and assessment of its role in virulence of the bacterium. Infection and Immunity 75: 774780.
Scholz, HC, Hubalek, Z, Sedláček, I, Vergnaud, G, Tomaso, H, Al Dahouk, S, Melzer, F, Kämpfer, P, Nuebauer, H, Cloeckaert, A, Marquart, M, Zygmunt, MS, Whatmore, AM, Falsen, E, Bahn, P, Göllner, C, Pfeffer, M, Huber, B, Busse, HJ and Knöckler, K (2008). Brucella microti sp. nov., isolated from the common vole Microtus arvalis. International Journal of Systematic and Evolutionary Microbiology 58: 375382.
Scholz, HC, Knöckler, K, Göllner, C, Bahn, P, Vergnaud, G, Tomaso, H, Al Dahouk, S, Kämpfer, P, Cloeckaert, A, Marquart, M, Zygmunt, MS, Whatmore, AM, Pfeffer, M, Huber, B, Busse, HJ and De, BK (2010). Brucella inopinata sp. nov., isolated from a breast implant infection. International Journal of Systematic and Evolutionary Microbiology 60: 801808.
Schroeder, S, Lawrence, AD, Biedendieck, R, Rose, RS, Deery, E, Graham, RM, McLean, KJ, Munro, AW, Rigby, SE and Warren, MJ (2009). Demonstration that CobG, the monooxygenase associated with the ring contraction process of the aerobic cobalamin (vitamin B12) biosynthetic pathway, contains an Fe-S center and a mononuclear non-heme iron center. Journal of Biological Chemistry 284: 47964805.
Sieira, R, Comerci, DJ, Sánchez, DO and Ugalde, RA (2000). A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular replication. Journal of Bacteriology 182: 48494855.
Sobota, J and Imlay, JA (2011). Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide, but can be protected by manganese. Proceedings of the National Academy of Sciences USA. 108: 54025407.
Sola-Landa, A, Pizarro-Cerdá, J, Grilló, MJ, Moriyón, I, Blasco, JM, Gorvel, JP and López-Goñi, I (1998). A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. Molecular Microbiology 29: 125138.
Smith, DL, Tao, T and Maguire, ME (1993). Membrane topology of a P-type ATPase. The MgtB magnesium transport protein of Salmonella typhimurium. Journal of Biological Chemistry 268: 2246922479.
Smith, H, Williams, AE, Pearce, JH, Keppie, J, Harris-Smith, PW, Fitzgeorge, RB and Witt, K (1962). Foetal erythritol: a cause of the localization of Brucella abortus in bovine contagious abortion. Nature 193: 4749.
Sohn, AH, Probert, WS, Glaser, CA, Gupta, N, Bollen, AW, Wong, JD, Grace, EM and McDonald, WC (2003). Human neurobrucellosis with intracebral granuloma caused by a marine mammal Brucella spp. Emerging Infectious Diseases 9: 485488.
Sperry, JF and Robertson, DC (1975). Erythritol catabolism by Brucella abortus. Journal of Bacteriology 121: 619630.
Stoenner, HG and Lackman, DB (1957). A new species of Brucella isolated from the desert wood rat, Neotoma lepida Thomas. American Journal of Veterinary Research 18: 947951.
Summers, AO (2009). Damage control: defenses against toxic metals and metalloids. Current Opinion in Microbiology 12: 138144.
Taga, ME and Walker, GC (2010). Sinorhizobium meliloti requires a cobalamin-dependent ribonucleotide reductase for symbiosis with its plant host. Molecular Plant-Microbe Interactions 23: 16431654.
Taketani, S (2005). Acquisition, mobilization and utilization of cellular iron and heme; endless findings and growing evidence of tight regulation. Tohoku Journal of Experimental Medicine 205: 297318.
Tatum, FM, Detilleux, PG, Sacks, JM and Halling, SM (1992). Construction of Cu-Zn superoxide dismutase deletions mutants of Brucella abortus: analysis of survival in vitro in epithelial and phagocytic cells and in vivo in mice. Infection and Immunity 60: 28632869.
Valderas, MW and Roop, RM II (2006). Brucella and bioterrorism. In: Anderson, B, Friedman, H and Bendinelli, M (eds) Microorganisms and Bioterrorism. New York: Springer, pp. 139153.
Waldron, KJ and Robinson, NJ (2009). How do bacterial cells ensure that metalloproteins get the correct metal? Nature Reviews Microbiology 6: 2535.
Wanke, MM (2004). Canine brucellosis. Animal Reproduction Science 82–83: 195207.
Waring, WS, Elberg, SS, Schneider, P and Green, W (1953). The role of iron in the biology of Brucella suis. I. Growth and nutrition. Journal of Bacteriology 66: 8291.
Weinberg, ED (1995). Acquisition of iron and other nutrients in vivo. In: Roth, JA, Bolin, CA, Brogden, KA, Minion, FC and Wannemuehler, MJ (eds) Virulence Mechanisms of Bacterial Pathogens, 2nd edn. Washington: ASM Press, pp. 7993.
Weiss, G (2005). Modification of iron regulation by the inflammatory response. Best Practices in Research in Clinical Haematology 18: 183201.
Yang, X, Becker, T, Walters, N and Pascual, DW (2006). Deletion of znuA virulence factor attenuates Brucella abortus and confers protection against wild-type challenge. Infection and Immunity 74: 38743879.
Zaharik, ML, Cullen, VL, Fung, AM, Libby, SJ, Kujat Choy, SL, Coburn, B, Kehres, DG, Maguire, ME, Fang, FC and Finlay, BB (2004). The Salmonella enterica serovar Typhimurium divalent cation transport systems MntH and SitABCD are essential for virulence in an Nramp1G169 murine typhoid model. Infection and Immunity 72: 55225525.
ZoBell, CE and Meyer, KF (1932). Metabolism studies on the Brucella group. VIII. Nutrient requirements in synthetic mediums. Journal of Infectious Diseases 51: 344360.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Animal Health Research Reviews
  • ISSN: 1466-2523
  • EISSN: 1475-2654
  • URL: /core/journals/animal-health-research-reviews
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed