Skip to main content Accessibility help
×
Home

Comparative evaluation of genomic inbreeding parameters in seven commercial and autochthonous pig breeds

  • G. Schiavo (a1), S. Bovo (a1), F. Bertolini (a2), S. Tinarelli (a1) (a3), S. Dall’Olio (a1), L. Nanni Costa (a1), M. Gallo (a3) and L. Fontanesi (a1)...

Abstract

Single nucleotide polymorphism (SNP) genotyping tools, which can analyse thousands of SNPs covering the whole genome, have opened new opportunities to estimate the inbreeding level of animals directly using genome information. One of the most commonly used genomic inbreeding measures considers the proportion of the autosomal genome covered by runs of homozygosity (ROH), which are defined as continuous and uninterrupted chromosome portions showing homozygosity at all loci. In this study, we analysed the distribution of ROH in three commercial pig breeds (Italian Large White, n = 1968; Italian Duroc, n = 573; and Italian Landrace, n = 46) and four autochthonous breeds (Apulo-Calabrese, n = 90; Casertana, n = 90; Cinta Senese, n = 38; and Nero Siciliano, n = 48) raised in Italy, using SNP data generated from Illumina PorcineSNP60 BeadChip. We calculated ROH-based inbreeding coefficients (FROH) using ROH of different minimum length (1, 2, 4, 8, 16 Mbp) and compared them with several other genomic inbreeding coefficients (including the difference between observed and expected number of homozygous genotypes (FHOM)) and correlated all these genomic-based measures with the pedigree inbreeding coefficient (FPED) calculated for the pigs of some of these breeds. Autochthonous breeds had larger mean size of ROH than all three commercial breeds. FHOM was highly correlated (0.671 to 0.985) with FROH measures in all breeds. Apulo-Calabrese and Casertana had the highest FROH values considering all ROH minimum lengths (ranging from 0.273 to 0.189 and from 0.226 to 0.152, moving from ROH of minimum size of 1 Mbp (FROH1) to 16 Mbp (FROH16)), whereas the lowest FROH values were for Nero Siciliano (from 0.072 to 0.051) and Italian Large White (from 0.117 to 0.042). FROH decreased as the minimum length of ROH increased for all breeds. Italian Duroc had the highest correlations between all FROH measures and FPED (from 0.514 to 0.523) and between FHOM and FPED (0.485). Among all analysed breeds, Cinta Senese had the lowest correlation between FROH and FPED. This might be due to the imperfect measure of FPED, which, mainly in local breeds raised in extensive production systems, cannot consider a higher level of pedigree errors and a potential higher relatedness of the founder population. It appeared that ROH better captured inbreeding information in the analysed breeds and could complement pedigree-based inbreeding coefficients for the management of these genetic resources.

Copyright

Corresponding author

References

Hide All
ANAS 2019. Registro Anagrafico. Retrieved on 10 June 2019 from http://www.anas.it/.
Barbato, M, Orozco-terWengel, P, Tapio, M and Bruford, MW 2015. SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Frontiers in Genetics 6, 109.
Bertolini, F, Cardoso, TF, Marras, G, Nicolazzi, EL, Rothschild, MF, Amills, M and AdaptMap consortium 2018a. Genome-wide patterns of homozygosity provide clues about the population history and adaptation of goats. Genetics Selection Evolution 50, 59.
Bertolini, F, Schiavo, G, Galimberti, G, Bovo, S, D’Andrea, M, Gallo, M, Buttazzoni, L, Rothschild, MF and Fontanesi, L 2018b. Genome-wide association studies for seven production traits highlight genomic regions useful to dissect dry-cured ham quality and production traits in Duroc heavy pigs. Animal 12, 17771784.
Bosse, M, Megens, HJ, Madsen, O, Paudel, Y, Frantz, LA, Schook, LB, Crooijmans, RP and Groenen, MA 2012. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genetics 8, e1003100.
Ceballos, FC, Joshi, PK, Clark, DW, Ramsay, M and Wilson, JF 2018. Runs of homozygosity: windows into population history and trait architecture. Nature Review Genetics 19, 220234.
Chang, CC, Chow, CC, Tellier, LC, Vattikuti, S, Purcell, SM and Lee, JJ 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, s13742–015–0047–8.
Charlesworth, D and Willis, JH 2009. Fundamental concepts in genetics. The genetics of inbreeding depression. Nature Review Genetics 10, 783796.
Ferenčaković, M, Hamzić, E, Gredler, B, Solberg, TR, Klemetsdal, G, Curik, I and Sölkner, J 2013a. Estimates of autozygosity derived from runs of homozygosity: empirical evidence from selected cattle populations. Journal of Animal Breeding and Genetics 130, 286293.
Ferenčaković, M, Solkner, J and Curik, I 2013b. Estimating autozygosity from high throughput information: effects of SNP density and genotyping errors. Genetics Selection Evolution 45, 42.
Fernández, A, Rodrigáñez, J, Toro, MA, Rodríguez, MC and Silió, L 2002. Inbreeding effects on the parameters of the growth function in three strains of Iberian pigs. Journal of Animal Science 80, 22672275.
Fisher, RA 1954. A fuller theory of junctions in inbreeding. Heredity 8, 187197.
Gibson, J, Morton, NE and Collins, A 2006. Extended tracts of homozygosity in outbred human populations. Human Molecular Genetics 15, 789795.
Gomez-Raya, L, Rodríguez, C, Barragán, C and Silió, L 2015. Genomic inbreeding coefficients based on the distribution of the length of runs of homozygosity in a closed line of Iberian pigs. Genetics Selection Evolution 47, 81.
Joaquim, LB, Chud, TCS, Marchesi, JAP, Savegnago, RP, Buzanskas, ME, Zanella, R, Cantão, ME, Peixoto, JO, Ledur, MC, Irgang, R and Munari, DP 2019. Genomic structure of a crossbred Landrace pig population. PLoS ONE 14, e0212266.
Keller, MC, Visscher, PM and Goddard, ME 2011. Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. Genetics 89, 237249.
Kirin, M, McQuillan, R, Franklin, CS, Campbell, H, McKeigue, PM and Wilson, JF 2010. Genomic runs of homozygosity record population history and consanguinity. PLoS ONE 5, e13996.
Marras, G, Gaspa, G, Sorbolini, S, Dimauro, C, Ajmone-Marsan, P, Valentini, A, Williams, JL and Macciotta, NP 2015. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Animal Genetics 46, 110121.
Mastrangelo, S, Tolone, M, Di Gerlando, R, Fontanesi, L, Sardina, MT and Portolano, B 2016. Genomic inbreeding estimation in small populations: evaluation of runs of homozygosity in three local dairy cattle breeds. 2016. Animal 10, 746754.
McQuillan, R, Leutenegger, A-L, Abdel-Rahman, R, Franklin, CS, Pericic, M, Barac-Lauc, L, Smolej-Narancic, N, Janicijevic, B, Polasek, O, Tenesa, A, Macleod, AK, Farrington, SM, Rudan, P, Hayward, C, Vitart, V, Rudan, I, Wild, SH, Dunlop, MG, Wright, AF, Campbell, H and Wilson, JF 2008. Runs of homozygosity in European populations. American Journal of Human Genetics 83, 359372.
Muñoz, M, Bozzi, R, García, F, Núñez, Y, Geraci, C, Crovetti, A, García-Casco, J, Alves, E, Škrlep, M, Charneca, R, Martins, JM, Quintanilla, R, Tibau, J, Kušec, G, Djurkin-Kušec, I, Mercat, MJ, Riquet, J, Estellé, J, Zimmer, C, Razmaite, V, Araujo, JP, Radović, Č, Savić, R, Karolyi, D, Gallo, M, Čandek-Potokar, M, Fontanesi, L, Fernández, AI and Óvilo, C 2018. Diversity across major and candidate genes in European local pig breeds. PLoS ONE 13, e0207475.
Peripolli, E, Metzger, J, de Lemos, MVA, Stafuzza, NB, Kluska, S, Olivieri, BF, Feitosa, FLB, Berton, MP, Lopes, FB, Munari, DP, Lôbo, RB, Magnabosco, CU, Di Croce, F, Osterstock, J, Denise, S, Pereira, ASC and Baldi, F 2018. Autozygosity islands and ROH patterns in Nellore lineages: evidence of selection for functionally important traits. BMC Genomics 19, 680.
Peripolli, E, Munari, DP, Silva, MVGB, Lima, ALF, Irgang, R and Baldi, F 2017. Runs of homozygosity: current knowledge and applications in livestock. Animal Genetics 48, 255271.
Purfield, DC, Berry, DP, McParland, S and Bradley, DG 2012. Runs of homozygosity and population history in cattle. BMC Genetics 13, 70.
Purfield, DC, McParland, S, Wall, E and Berry, DP 2017. The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PLoS ONE 12, e0176780.
Russo, V, Fontanesi, L, Dolezal, M, Lipkin, E, Scotti, E, Zambonelli, P, Dall’Olio, S, Bigi, D, Davoli, R, Canavesi, F, Medugorac, I, Föster, M, Sölkner, J, Schiavini, F, Bagnato, A and Soller, M 2012. A whole genome scan for QTL affecting milk protein percentage in Italian Holstein cattle, applying selective milk DNA pooling and multiple marker mapping in a daughter design. Animal Genetics 43 (Suppl. 1), 7286.
Saura, M, Fernández, A, Varona, L, Fernández, AI, De Cara, MÁR, Barragán, C and Villanueva, B 2015. Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genetics Selection Evolution 47, 1.
Schiavo, G, Bovo, S, Dall’Olio, S, Nanni Costa, L, Tinarelli, S, Gallo, M, Bertolini, F and Fontanesi, L 2019. Comparative evaluation of genomic inbreeding parameters in Italian pig breeds. Italian Journal of Animal Science 18 (Suppl. 1), 118119.
Schiavo, G, Galimberti, G, Calò, DG, Samorè, AB, Bertolini, F, Russo, V, Gallo, M, Buttazzoni, L and Fontanesi, L 2016. Twenty years of artificial directional selection have shaped the genome of the Italian Large White pig breed. Animal Genetics 47, 181191.
Silió, L, Rodríguez, MC, Fernández, A, Barragán, C, Benítez, R, Óvilo, C and Fernández, AI 2013. Measuring inbreeding and inbreeding depression on pig growth from pedigree or SNP-derived metrics. Journal of Animal Breeding and Genetics 130, 349360.
Slate, J, David, P, Dodds, KG, Veenvliet, BA, Glass, BC, Broad, TE and McEwan, JC 2004. Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93, 255.
VanRaden, PM, Olson, KM, Wiggans, GR, Cole, JB and Tooker, ME 2011. Genomic inbreeding and relationships among Holsteins, Jerseys, and Brown Swiss. Journal of Dairy Science 94, 56735682.
Wright, S 1922. Coefficients of inbreeding and relationship. American Naturalist 56, 330338.
Yang, B, Cui, L, Perez-Enciso, M, Traspov, A, Crooijmans, RPMA, Zinovieva, N, Schook, LB, Archibald, A, Gatphayak, K, Knorr, C, Triantafyllidis, A, Alexandri, P, Semiadi, G, Hanotte, O, Dias, D, Dovč, P, Uimari, P, Iacolina, L, Scandura, M, Groenen, MAM, Huang, L and Megens, HJ 2017. Genome-wide SNP data unveils the globalization of domesticated pigs. Genetics Selection Evolution 49, 71.
Yang, J, Lee, SH, Goddard, ME and Visscher, PM 2011. GCTA: a tool for Genome-wide Complex Trait Analysis. American Journal of Human Genetics 88, 7682.
Zanella, R, Peixoto, JO, Cardoso, FF, Cardoso, LL, Biegelmeyer, P, Cantão, ME, Otaviano, A, Freitas, MS, Caetano, AR and Ledur, MC 2016. Genetic diversity analysis two commercial breeds of pigs using genomic and pedigree data. Genetics Selection Evolution 48, 24.

Keywords

Type Description Title
WORD
Supplementary materials

Schiavo et al. supplementary material
Tables S1-S7 and Figure S1

 Word (133 KB)
133 KB

Comparative evaluation of genomic inbreeding parameters in seven commercial and autochthonous pig breeds

  • G. Schiavo (a1), S. Bovo (a1), F. Bertolini (a2), S. Tinarelli (a1) (a3), S. Dall’Olio (a1), L. Nanni Costa (a1), M. Gallo (a3) and L. Fontanesi (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed