Skip to main content Accessibility help

Dietary probiotic supplementation improves growth and the intestinal morphology of Nile tilapia

  • M. A. Ramos (a1) (a2) (a3), S. Batista (a1) (a4), M. A. Pires (a3), A. P. Silva (a2), L. F. Pereira (a1), M. J. Saavedra (a1) (a3), R. O. A. Ozório (a1) (a4) and P. Rema (a3)...


Probiotic administration can be a nutritional strategy to improve the immune response and growth performance of fish. The current study aimed to evaluate the effects of a probiotic blend (Bacillus sp., Pediococcus sp., Enterococcus sp., Lactobacillus sp.) as a dietary supplement on growth performance, feed utilization, innate immune and oxidative stress responses and intestinal morphology in juvenile Nile tilapia (Oreochromis niloticus). The probiotic was incorporated into a basal diet at three concentrations: 0 g/kg (A0: control), 3 g/kg (A1: 1.0×106 colony forming unit (CFU)/g) and 6 g/kg (A2: 2.3×106 CFU/g diet). After 8 weeks of probiotic feeding, weight and specific growth rate where significantly higher in fish-fed A1 diet than in fish-fed A0. Alternative complement in plasma was significantly enhanced in fish-fed A2 when compared with A0. The hepatic antioxidant indicators were not affected by probiotic supplementation. Villi height and goblet cell counts increased significantly in the intestine of fish-fed A1 and A2 diets compared with A0. The dietary probiotic supplementation was maintained until 20 weeks of feeding. Then the selected immune parameters, digestive enzymes and apparent digestibility of diets were studied. No effect of probiotic feeding was observed after that longer period supplementation. The dietary supplementation of mixed species probiotic may constitute a valuable nutritional approach towards a sustainable tilapia aquaculture. The improvement of the immune responses and intestinal morphology play an important role in increasing growth performance, nutrient absorption and disease resistance in fish, important outcomes in such a competitive and developing aquaculture sector.


Corresponding author



Hide All
Balcazar, JL, De Blas, I, Ruiz-Zarzuela, I, Vendrell, D, Calvo, AC, Marquez, I, Girones, O and Muzquiz, JL 2007. Changes in intestinal microbiota and humoral immune response following probiotic administration in brown trout (Salmo trutta). British Journal of Nutrition 97, 522527.
Castex, M, Lemaire, P, Wabete, N and Chim, L 2009. Effect of dietary probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress status of shrimp Litopenaeus stylirostris . Aquaculture 294, 306313.
Essa, MA, Serafy, SSE, El-Ezabi, MM, Daboor, SM, Esmael, NA and Lall, SP 2010. Effect of different dietary probiotics on growth, feed utilization and digestive enzymes activities of Nile tilapia, Oreochromis niloticus . Journal of the Arabian Aquaculture Society 5, 143162.
Food and Agriculture Organization 2016. The state of world fisheries and aquaculture 2016: contributing to food security and nutrition for all. FAO of the United Nations, Rome, Italy.
Food and Agriculture Organization/World Health Organization 2002. Guidelines for the evaluation of probiotics in food (Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food. London, ON, Canada.
Giannenas, I, Karamaligas, I, Margaroni, M, Pappas, I, Mayer, E, Encarnação, P and Karagouni, E 2015. Effect of dietary incorporation of a multi-strain probiotic on growth performance and health status in rainbow trout (Oncorhynchus mykiss). Fish Physiology and Biochemistry 41, 119128.
Giatsis, C, Sipkema, D, Smidt, H, Heilig, H, Benvenuti, G, Verreth, J and Verdegem, M 2015. The impact of rearing environment on the development of gut microbiota in tilapia larvae. Scientific Reports 5, 18206.
Gisbert, E, Castillo, M, Skalli, A, Andree, KB and Badiola, I 2013. Bacillus cereus var. toyoi promotes growth, affects the histological organization and microbiota of the intestinal mucosa in rainbow trout fingerlings. Journal of Animal Science 91, 27662774.
Gravato, C, Teles, M, Oliveira, M and Santos, MA 2006. Oxidative stress, liver biotransformation and genotoxic effects induced by copper in Anguilla anguilla L. – the influence of pre-exposure to b-naphthoflavone. Chemosphere 65, 18211830.
Irianto, A and Austin, B 2002. Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases 25, 333342.
Lara-Flores, M, Olvera-Novoa, MA, Guzmán-Méndez, BE and López-Madrid, W 2003. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture 216, 193201.
Lazado, CC and Caipang, CMA 2014. Mucosal immunity and probiotics in fish. Fish & Shellfish Immunology 39, 7889.
Li, XQ, Zhu, YH, Zhang, HF, Yue, Y, Cai, ZX, Lu, QP, Zhang, L, Weng, XG, Zhang, FJ, Zhou, D, Yang, JC and Wang, JF 2012. Risks associated with high-dose Lactobacillus rhamnosus in an Escherichia coli model of piglet diarrhoea: intestinal microbiota and immune imbalances. PLoS One 7, e40666.
Lushchak, VI 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology 101, 1330.
Lutgendorff, F, Nijmeijer, RM, Sandström, PA, Trulsson, LM, Magnusson, K-E, Timmerman, HM, Minnen, LPv, Rijkers, GT, Gooszen, HG, Akkermans, LMA and Söderholm, JD 2009. Probiotics prevent intestinal barrier dysfunction in acute pancreatitis in rats via induction of ileal mucosal glutathione biosynthesis. PLoS One 4, e4512.
Madsen, K, Cornish, A, Soper, P, McKaigney, C, Jijon, H, Yachimec, C, Doyle, J, Jewell, L and De Simone, C 2001. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121, 580591.
McGuckin, MA, Lindén, SK, Sutton, P and Florin, TH 2011. Mucin dynamics and enteric pathogens. Nature Reviews Microbiology 9, 265278.
Merrifield, DL and Carnevali, O 2014. Probiotic modulation of the gut microbiota of fish. In Aquaculture nutrition: gut health, probiotics and prebiotics (ed. D Merrifield and E Ringø), pp. 185222. John Wiley & Sons, Ltd, Chichester, UK.
Merrifield, DL and Ringø, E 2014. Aquaculture nutrition: gut health, probiotics and prebiotics. John Wiley & Sons, Ltd, Chichester, UK.
Merrifield, DL, Harper, GM, Dimitroglou, A, Ringø, E and Davies, SJ 2010. Possible influence of probiotic adhesion to intestinal mucosa on the activity and morphology of rainbow trout (Oncorhynchus mykiss) enterocytes. Aquaculture Research 41, 12681272.
Ozório, ROA, Kopecka-Pilarczyk, J, Peixoto, MJ, Lochmann, R, Santos, RJ, Santos, G, Weber, B, Calheiros, J, Ferraz-Arruda, L, Vaz-Pires, P and Gonçalves, JFM 2016. Dietary probiotic supplementation in juvenile rainbow trout (Oncorhynchus mykiss) reared under cage culture production: effects on growth, fish welfare, flesh quality and intestinal microbiota. Aquaculture Research 47, 27322747.
Pirarat, N, Pinpimai, K, Endo, M, Katagiri, T, Ponpornpisit, A, Chansue, N and Maita, M 2011. Modulation of intestinal morphology and immunity in Nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Research in Veterinary Science 91, e92e97.
Ramos, MA, Gonçalves, JFM, Batista, S, Costas, B, Pires, MA, Rema, P and Ozório, ROA 2015. Growth, immune responses and intestinal morphology of rainbow trout (Oncorhynchus mykiss) supplemented with commercial probiotics. Fish & Shellfish Immunology 45, 1926.
Ray, AK, Ghosh, K and Ringø, E 2012. Enzyme-producing bacteria isolated from fish gut: a review. Aquaculture Nutrition 18, 465492.
Reyes-Becerril, M, Tovar-Ramírez, D, Ascencio-Valle, F, Civera-Cerecedo, R, Gracia-López, V, Barbosa-Solomieu, V and Esteban, 2011. Effects of dietary supplementation with probiotic live yeast Debaryomyces hansenii on the immune and antioxidant systems of leopard grouper Mycteroperca rosacea infected with Aeromonas hydrophila . Aquaculture Research 42, 16761686.
Ringø, E, Olsen, RE, Mayhew, TM and Myklebust, R 2003. Electron microscopy of the intestinal microflora of fish. Aquaculture 227, 395415.
Ringø, E, Salinas, I, Olsen, RE, Nyhaug, A, Myklebust, R and Mayhew, TM 2007. Histological changes in intestine of Atlantic salmon (Salmo salar L.) following in vitro exposure to pathogenic and probiotic bacterial strains. Cell & Tissue Research 328, 109116.
Robertson, PAW, O’Dowd, C, Burrells, C, Williams, P and Austin, B 2000. Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture 185, 235243.
Standen, BT, Rodiles, A, Peggs, DL, Davies, SJ, Santos, GA and Merrifield, DL 2015. Modulation of the intestinal microbiota and morphology of tilapia, Oreochromis niloticus, following the application of a multi-species probiotic. Applied Microbiology and Biotechnology 99, 84038417.
Standen, BT, Peggs, DL, Rawling, MD, Foey, A, Davies, SJ, Santos, GA and Merrifield, DL 2016. Dietary administration of a commercial mixed-species probiotic improves growth performance and modulates the intestinal immunity of tilapia, Oreochromis niloticus. Fish & Shellfish Immunology 49, 427435.
Suzer, C, Çoban, D, Kamaci, HO, Saka, Ş, Firat, K, Otgucuoğlu, Ö and Küçüksari, H 2008. Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: effects on growth performance and digestive enzyme activities. Aquaculture 280, 140145.
Telli, GS, Ranzani-Paiva, MJT, Dias, DC, Sussel, FR, Ishikawa, CM and Tachibana, L 2014. Dietary administration of Bacillus subtilis on hematology and non-specific immunity of Nile tilapia Oreochromis niloticus raised at different stocking densities. Fish & Shellfish Immunology 39, 305311.
Thongprajukaew, K, Kovitvadhi, U, Kovitvadhi, S, Somsueb, P and Rungruangsak-Torrissen, K 2011. Effects of different modified diets on growth, digestive enzyme activities and muscle compositions in juvenile Siamese fighting fish (Betta splendens Regan, 1910). Aquaculture 322–323, 19.
Verschuere, L, Rombaut, G, Sorgeloos, P and Verstraete, W 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews 64, 655671.
Watanabe, WO, Losordo, TM, Fitzsimmons, K and Hanley, F 2002. Tilapia production systems in the Americas: technological advances, trends, and challenges. Reviews in Fisheries Science 10, 465498.


Dietary probiotic supplementation improves growth and the intestinal morphology of Nile tilapia

  • M. A. Ramos (a1) (a2) (a3), S. Batista (a1) (a4), M. A. Pires (a3), A. P. Silva (a2), L. F. Pereira (a1), M. J. Saavedra (a1) (a3), R. O. A. Ozório (a1) (a4) and P. Rema (a3)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed