Skip to main content Accessibility help
×
Home

Effect of supplementing sheep diets with macroalgae species on in vivo nutrient digestibility, rumen fermentation and blood amino acid profile

  • Ş. Özkan Gülzari (a1), V. Lind (a1), I. M. Aasen (a2) and H. Steinshamn (a1)

Abstract

In this study, a brown macroalgae species, Saccharina latissima, processed to increase its protein concentration, and a red macroalgae species, Porphyra spp., were used to evaluate their in vivo digestibility, rumen fermentation and blood amino acid concentrations. Four castrated rams were used, whose diets were supplemented with a protein-rich fraction of S. latissima, a commercial Porphyra spp. and soybean meal (SBM). Our results show that the protein digestibility of a diet with S. latissima extract was lower (0.55) than those with Porphyra spp. (0.64) and SBM (0.66). In spite of the higher nitrogen (N) intake of diets containing Porphyra spp. and SBM (20.9 and 19.8 g N/day, respectively) than that with S. latissima (18.6 g N/day), the ratio of N excreted in faeces to total N intake was significantly higher in the diet with S. latissima than those with Porphyra spp. and SBM. This reflects that the utilization of protein in S. latissima was impaired, possibly due to reduced microbial activity. The latter statement is corroborated by lower volatile fatty acid composition (25.6, 54.8 and 100 mmol/l for S. latissima, Porphyra spp. and SBM, respectively) and a non-significant tendency for lower ammonia concentration observed in diets with S. latissima and Porphyra spp. compared to SBM. It is important to note that the S. latissima used in this trial was rinsed during processing to remove salt. This process potentially also removes other water-soluble compounds, such as free amino acids, and may have increased the relative fraction of protein resistant to rumen degradation and intestinal absorption. Furthermore, the phlorotannins present in macroalgae may have formed complexes with protein and fibre, further limiting their degradability in rumen and absorption in small intestines. We recommend that further studies explore the extent to which processing of macroalgae affects its nutritive properties and rumen degradability, in addition to studies to measure the intestinal absorption of these macroalgae species.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of supplementing sheep diets with macroalgae species on in vivo nutrient digestibility, rumen fermentation and blood amino acid profile
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of supplementing sheep diets with macroalgae species on in vivo nutrient digestibility, rumen fermentation and blood amino acid profile
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of supplementing sheep diets with macroalgae species on in vivo nutrient digestibility, rumen fermentation and blood amino acid profile
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Footnotes

Hide All

Present address: Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH Wageningen, The Netherlands. E-mail: seyda.ozkan@wur.nl

Footnotes

References

Hide All
AOAC 2000. Official methods of analysis. 17th edition. Association of Official Analytical Chemists, Arlington, VA.
Arieli, A, Sklan, D and Kissil, G 1993. A note on the nutritive value of Ulva lactuca for ruminants. Animal Science 57, 329331.
Arnold, TM and Targett, NM 1998. Quantifying in situ rates of phlorotannin synthesis and polymerization in marine brown algae. Journal of Chemical Ecology 24, 577595.
Burtin, P 2003. Nutritional value of seaweeds. Electronic Journal of Environmental, Agricultural and Food Chemistry 2, 498503.
Carvalho, LPF, Melo, DSP, Pereira, CRM, Rodrigues, MAM, Cabrita, ARJ and Fonseca, AJM 2005. Chemical composition, in vivo digestibility, N degradability and enzymatic intestinal digestibility of five protein supplements. Animal Feed Science and Technology 119, 171178.
Clark, JH, Murphy, MR and Crooker, BA 1987. Supplying the protein needs of dairy cattle from by-product feeds. Journal of Dairy Science 70, 10921109.
Fernando, SC, Purvis, HT, Najar, FZ, Sukharnikov, LO, Krehbiel, CR, Nagaraja, TG, Roe, BA and DeSilva, U 2010. Rumen microbial population dynamics during adaptation to a high-grain diet. Applied and Environmental Microbiology 76, 74827490.
Frutos, P, Hervás, G, Giráldez, FJ and Mantecón, AR 2004. Tannins and ruminant nutrition. Spanish Journal of Agricultural Research 2, 191202.
Frydrych, Z 1992. Intestinal digestibility of rumen undegraded protein of various feeds as estimated by the mobile bag technique. Animal Feed Science and Technology 37, 161172.
Gaillard, C, Bhatti, HS, Novoa-Garrido, M, Lind, V, Roleda, MY and Weisbjerg, MR 2018. Amino acid profiles of nine seaweed species and their in situ degradability in dairy cows. Animal Feed Science and Technology 241, 210222.
Greenwood, Y, Orpin, CG and Paterson, IW 1983. Digestibility of seaweeds in Orkney sheep. Journal of Physiology 343, 120.
Jarrige, R 1988. Alimentation des bovins, ovins & caprins. INRA-Quae, Versailles, France.
Lamminen, M, Halmemies-Beauchet-Filleau, A, Kokkonen, T, Simpura, I, Jaakkola, S and Vanhatalo, A 2017. Comparison of microalgae and rapeseed meal as supplementary protein in the grass silage based nutrition of dairy cows. Animal Feed Science and Technology 234, 295311.
Makkar, HPS, Tran, G, Heuzé, V, Giger-Reverdin, S, Lessire, M, Lebas, F and Ankers, P 2016. Seaweeds for livestock diets: a review. Animal Feed Science and Technology 212, 117.
McCullough, H 1967. The determination of ammonia in whole blood by a direct colorimetric method. Clinical Chimica Acta; International Journal of Clinical Chemistry and Diagnostic Laboratory Medicine 17, 297304.
Mertens, DR 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International (The Association of Analytical Communities) 85, 12171240.
Milis, C, Liamadis, D, Karalazos, A and Dotas, D 2005. Effects of main protein, non-forage fibre and forage source on digestibility, N balance and energy value of sheep rations. Small Ruminant Research 59, 6573.
Nicholson, J, Haynes, E, Warner, R and Loosli, J 1956. Digestibility of various rations by steers as influenced by the length of preliminary feeding period. Journal of Animal Science 15, 11721179.
Nitschke, U and Stengel, DB 2015. A new HPLC method for the detection of iodine applied to natural samples of edible seaweeds and commercial seaweed food products. Food Chemistry 172, 326334.
Omed, HM 1986. Studies of the relationships between pasture type and Quality and the feed intake of grazing sheep. PhD thesis, University College of North Wales, Nagor, UK.
Orpin, CG, Greenwood, Y, Hall, FJ and Paterson, IW 1985. The rumen microbiology of seaweed digestion in Orkney sheep. Journal of Applied Microbiology 58, 585596.
Özkan Gülzari, Ş, Åby, BA, Persson, T, Höglind, M and Mittenzwei, K 2017. Combining models to estimate the impacts of future climate scenarios on feed supply, greenhouse gas emissions and economic performance on dairy farms in Norway. Agricultural Systems 157, 157169.
Özkan Gülzari, Ş, Lind, V, Aasen, IM and Steinshamn, H 2018a. In vivo nutrient digestibility of a protein fraction extracted from macroalgae Saccharina latissima in sheep. In Proceedings of the 9th Nordic Feed Science Conference, 12–13 June 2018, Swedish University of Agricultural Sciences, Sweden, pp. 8386.
Özkan Gülzari, Ş, Lind, V, Aasen, IM and Steinshamn, H 2018b. Chemical composition and in vivo digestibility of seaweed as a protein source for ruminant nutrition. Presented at the 69th Annual Meeting of the European Federation of Animal Science, 27–31 August 2018, Dubrovnik, Croatia, p. 632.
Puhakka, L, Jaakkola, S, Simpura, I, Kokkonen, T and Vanhatalo, A 2016. Effects of replacing rapeseed meal with fava bean at 2 concentrate crude protein levels on feed intake, nutrient digestion, and milk production in cows fed grass silage-based diets. Journal of Dairy Science 99, 79938006.
Ramin, M, de Oliveira Franco, M, Roleda, MY, Aasen, IM, Hetta, M and Steinshamn, H 2017. Effect of extracted seaweed protein fractions on estimated utilizable crude protein, methane emission and fermentation parameters an in vitro evaluation. Proceedings of 8th Nordic Feed Science Conference, 13–14 June 2017, Swedish University of Agricultural Sciences, Sweden, pp. 6570.
Roleda, MY, Marfaing, H, Desnica, N, Jónsdóttir, R, Skjermo, J, Rebours, C and Nitschke, U 2019. Variations in polyphenol and heavy metal contents of wild-harvested and cultivated seaweed bulk biomass: health risk assessment and implication for food applications. Food Control 95, 121134.
Roleda, MY, Skjermo, J, Marfaing, H, Jónsdóttir, R, Rebours, C, Gietl, A, Stengel, DB and Nitschke, U 2018. Iodine content in bulk biomass of wild-harvested and cultivated edible seaweeds: inherent variations determine species-specific daily allowable consumption. Food Chemistry 254, 333339.
Rymer, C 2000. The measurement of forage digestibility in vivo. In Forage evaluation in ruminant nutrition (ed. Givens, DI, Owen, E, Axford, RFE, Omed, HM), pp. 113134. CABI Publishing, London, UK.
Schiener, P, Black, KD, Stanley, MS and Green, DH 2015. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. Journal of Applied Phycology 27, 363373.
Statistical Analysis System Institute Inc 2011. SAS/STAT® 9.3 user’s guide. Cary, NC, USA.
Tayyab, U, Novoa-Garrido, M, Roleda, MY, Lind, V and Weisbjerg, MR 2016. Ruminal and intestinal protein degradability of various seaweed species measured in situ in dairy cows. Animal Feed Science and Technology 213, 4454.
Wang, Y, Alexander, TW and McAllister, TA 2009. In vitro effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on rumen bacterial populations and fermentation. Journal of the Science of Food and Agriculture 89, 22522260.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed