Skip to main content Accessibility help

The impact of daily multiphase feeding on animal performance, body composition, nitrogen and phosphorus excretions, and feed costs in growing–finishing pigs

  • C. Pomar (a1), J. Pomar (a2), F. Dubeau (a3), E. Joannopoulos (a3) and J.-P. Dussault (a4)...


The effect of feeding pigs in a three-phase feeding (3PF) system or a daily-phase feeding (DPF) system on growth performance, body composition, and N and P excretions was studied on 8 pens of 10 pigs each. Feeds for the 3PF and DPF treatments were obtained by mixing two feeds, one with a high nutrient concentration and the other with a low nutrient concentration. The DPF pigs tended (P=0.08) to consume more feed (+3.7%) than the 3PF pigs, but only during the first feeding phase. The DPF pigs consumed 7.3% less protein (P<0.01) but a similar amount of total P. For the whole growing period, the DPF pigs tended (P=0.08) to gain more weight (+2.4%) than the 3PF pigs, mainly because of faster growth (P=0.02) during the first feeding period. At the end of the experiment, total body protein mass was similar in the two treatment groups, but the DPF pigs had 8% more body lipids (P=0.04) than the 3PF pigs. Daily multiphase feeding reduced N excretion by 12% (P<0.01) but did not significantly reduce P excretion. In addition, feed costs, nutrient intake and nutrient excretion under the two feeding strategies were simulated and compared after different approaches were used to formulate complete feeds for each phase of the 3PF system, as well as the two feeds used in the DPF program. Simulated feed intake and growth was similar to those observed in the animal experiment. In comparison with the simulated 3PF system, the feed cost for the DPF pigs was reduced by 1.0%, the simulated N and P intakes were reduced by 7.3% and 4.4%, respectively, and the expected N and P excretions were reduced by 12.6% and 6.6%, respectively. The concomitant adjustment of the dietary concentration of nutrients to match the evaluated requirements of pig populations can be an efficient approach to significantly reduce feeding costs and N and P excretions in pig production systems.


Corresponding author


Hide All
Agriculture and Agri-Food Canada 1993. Recommended code of practice for the care and handling of farm animals – pigs. AAFC, Ottawa, ON, Canada.
Association of Official Analytical Chemists 1990. Official methods of analysis. AOAC, Washington, DC, USA.
Beaulieu, AD, Williams, NH and Patience, JF 2009. Response to dietary digestible energy concentration in growing pigs fed cereal grain-based diets. Journal of Animal Science 87, 965976.
Black, JL, Campbell, RG, Williams, IH, James, KJ and Davies, GT 1986. Simulation of energy and amino acid utilisation in the pig. Research and Development in Agriculture 3, 121145.
Bourdon, D, Dourmad, J-Y and Henry, Y 1995. Réduction des rejets azotés chez les porcs en croissance par la mise en oeuvre de l’alimentation multiphase, associée à l’abaissement du taux azoté. Journées de la Recherche Porcine 27, 269278.
Brossard, L, Quiniou, N, Dourmad, J-Y, Salaün, Y and van Milgen, J 2010. Définir des stratégies alimentaires alliant performance économique et impact environnemental grâce à la modélisation du groupe de porcs en croissance. Journées de la Recherche Porcine 42, 131132.
Canadian Council on Animal Care 1993. Guide to the care and use of experimental animals, vol. 1. CCAC, Ottawa, ON, Canada.
Comité d’ORientation pour des Pratiques agricoles respectueuses de l’ENvironnement (Groupe Porc) 2003. Estimation des rejets d’azote – phosphore – potassium – cuivre – zinc des porcs. CORPEN, Paris, France.
Czyzyk, J, Mesnier, MP and More, JJ 1998. NEOS server. IEEE Computational Science & Engineering 5, 6875.
Dourmad, JY, Guingand, N, Latimier, P and Sève, B 1999aNitrogen and phosphorus consumption, utilisation and losses in pig production: France. Livestock Production Science 58, 199211.
Dourmad, JY, Sève, B, Latimier, P, Boisen, S, Fernández, J, van der Peet-Schwering, C and Jongbloed, AW 1999bNitrogen consumption, utilisation and losses in pig production in France, The Netherlands and Denmark. Livestock Production Science 58, 261264.
Emmans, GC 1981. A model of the growth and feed intake of ad libitum fed animals, particularly poultry. In Computers in animal production. Occasional Publication No. 5 (eds GM Hillyer, CT Whittemore and RG Gunn), pp. 103110. British Society of Animal Production, Thames Ditton, Surrey, UK.
Feddes, JJR, Ouellette, CA and Leonard, JJ 2000. A system for providing protein for pigs in intermediately sized grower/finisher barns. Canadian Agricultural Engineering 42, 209213.
Fourer, R, Gay, DM and Kernighan, BW 2002. AMPL: a modeling language for mathematical programming. Thomson/Brooks/Cole, Pacific Grove, CA, USA.
Joannopoulos, E 2012. Nouvelles approaches de modélisation et d’optimisation de diète animale. Master Thesis, University of Sherbrooke, Sherbrooke, QC, Canada.
Joannopoulos, E, Pomar, C, Dussault, J-P and Dubeau, F 2014. The diet problem. In Handbook of operational research in agriculture and agri-food industry (ed. LM Plà-Aragonés), Springer, New York (In press).
Jondreville, C and Dourmad, J-Y 2005. Le phosphore dans la nutrition des porcs. INRA Productions Animales 18, 183192.
Kerr, BJ, Yen, JT, Nienaber, JA and Easter, RA 2003. Influences of dietary protein level, amino acid supplementation and environmental temperature on performance, body composition, organ weights and total heat production of growing pigs. Journal of Animal Science 81, 19982007.
Le Bellego, L and Noblet, J 2002. Performance and utilization of dietary energy and amino acids in piglets fed low protein diets. Livestock Production Science 76, 4558.
Lesschen, JP, van den Berg, M, Westhoek, HJ, Witzke, HP and Oenema, O 2011. Greenhouse gas emission profiles of European livestock sectors. Animal Feed Science and Technology 166–167, 1628.
Letourneau Montminy, M-P, Boucher, C, Pomar, C, Dubeau, F and Dussault, J-P 2005. Impact de la méthode de formulation et du nombre de phases d’alimentation sur le coût d’alimentation et les rejets d’azote et de phosphore chez le porc charcutier. Journées de la Recherche Porcine 37, 2532.
Möhn, S and de Lange, CFM 1998. The effect of body weight on the upper limit to protein deposition in a defined population of growing gilts. Journal of Animal Science 76, 124133.
National Research Council 1998. Nutrient requirements of swine. National Academies Press, Washington, DC, USA.
Niemann, H, Kuhla, B and Flachowsky, G 2011. Perspectives for feed-efficient animal production. Journal of Animal Science 89, 43444363.
Noblet, J, Henry, Y and Dubois, S 1987. Effect of protein and lysine levels in the diet on body gain composition and energy utilization in growing pigs. Journal of Animal Science 65, 717726.
Pomar, C and Matte, JJ 1995. Effet de l’incorporation d’écailles d’avoine dans l’aliment servi à volonté sur le rationnement en nutriments, la prise alimentaire et les performances de croissance du porc en finition. Journées de la Recherche Porcine 27, 231236.
Pomar, C and Rivest, J 1996. The effect of body position and data analysis on the estimation of body composition of pigs by dual energy X-ray absorptiometry (DEXA). Proceedings of 46th Annual Conference of the Canadian Society of Animal Science, 7–11 July, Lethbridge, AB, Canada, 26pp.
Pomar, C and Pomar, J 2012. Sustainable precision livestock farming: a vision for the Canadian swine industry. Advances in Pig Production 23, 207213.
Pomar, C, Dubeau, F, Letourneau Montminy, M-P, Mahé, M, Julien, P-O and Jondreville, C 2004. Réduction de l’excrétion de phosphore et d’azote chez le porc charcutier par l’ajout d’un objectif environnemental dans l’algorithme traditionnel de formulation. Journées de la Recherche Porcine 36, 251258.
Sauvant, D, Perez, J-M and Tran, G 2004. Tables de composition et de valeur nutritive des matières premières destinées aux animaux d'élevage: porcs, volailles, bovins, ovins, caprins, lapins, chevaux, poissons. INRA Editions, Paris, France.
Schinckel, AP and de Lange, CFM 1996. Characterization of growth parameters needed as inputs for pig growth models. Journal of Animal Science 74, 20212036.
van der Peet-Schwering, CMC, Verdoes, N and Beelen, GM 1996. Effect of feeding and housing on the ammonia emission of growing and finishing pig facilities. Research Institute for Pig Husbandry 5.3, 2728.
van der Peet-Schwering, CMC, Jongbloed, AW and Aarnink, AJA 1999. Nitrogen and phosphorus consumption, utilisation and losses in pig production: the Netherlands. Livestock Production Science 58, 213224.
van Milgen, J, Valancogne, A, Dubois, S, Dourmad, J-Y, Sève, B and Noblet, J 2008. InraPorc: a model and decision support tool for the nutrition of growing pigs. Animal Feed Science and Technology 143, 387405.
Whittemore, CT and Fawcett, RH 1976. Theoretical aspects of a flexible model to stimulate protein and lipid growth in pigs. Animal Production 22, 8796.
Whittemore, CT, Green, DM and Knap, PW 2001. Technical review of the energy and protein requirements of growing pigs: food intake. Animal Production 73, 317.
Zervas, S and Zijlstra, RT 2002. Effects of dietary protein and fermentable fiber on nitrogen excretion patterns and plasma urea in grower pigs. Journal of Animal Science 80, 32473256.


The impact of daily multiphase feeding on animal performance, body composition, nitrogen and phosphorus excretions, and feed costs in growing–finishing pigs

  • C. Pomar (a1), J. Pomar (a2), F. Dubeau (a3), E. Joannopoulos (a3) and J.-P. Dussault (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed