Skip to main content
×
Home

Influence of energy and nutrient supply pre and post partum on performance of multiparous Simmental, Brown Swiss and Holstein cows in early lactation

  • L. Gruber (a1), M. Urdl (a1), W. Obritzhauser (a2), A. Schauer (a1), J. Häusler (a1) and B. Steiner (a1)...
Abstract

A study was conducted to evaluate the effects of pre partum (PRE) and post partum (POST) dietary energy and nutrient supply (E) and their interactions on feed intake, performance and energy status in dairy cows of three breeds. In this experiment, the effects of three energy and nutrient supply levels (low (L), medium (M), high (H)), both pre-calving and post-calving, were investigated, using a 3×3 factorial arrangement of treatments. In both phases (84 days pre- and 105 days post-calving) E levels applied to a total of 81 multiparous cows of breeds Simmental (SI), Brown Swiss (BS) and Holstein–Friesian (HF; n=27 for each breed), were 75%, 100% and 125% of recommendations of the German Society of Nutrition Physiology (GfE). Dry matter intake (DMI) was restricted, if energy intake exceeded target values. Pre partum DMI and energy intake were different as designed, liveweight and body condition score (BCS) of SI cows were higher, but EB was lower, compared to BS and HF cows. Milk yield and composition were influenced by all three main experimental factors (EPRE, EPOST, breed). Energy-corrected milk yield was 25.6, 28.6 and 30.1 kg/day for LPRE, MPRE and HPRE as well as 21.5, 30.1 and 32.6 kg/day for LPOST, MPOST and HPOST, respectively. Numerically, only for milk protein content the interactions EPRE×EPOST and EPRE×breed reached significance. Impact of energy supply pre-calving was more pronounced when cows had lower energy supply post-calving and vice versa. On the other hand, milk yield response of cows to energy supply above requirements was greater for cows that were fed on a low energy level pre partum. Impact of energy level pre partum was higher for HF cows, showing that their milk production relies to a greater extent on mobilization of body reserves. Increasing energy supply pre partum led to a more negative energy balance post partum, mainly by increasing milk yield and content, whereas feed intake was slightly reduced. Increasing energy supply post partum enhanced milk yield as well as milk protein and lactose content. Calculated energy balance corresponded well with liveweight and BCS change. Response of milk yield to increasing energy supply followed the principle of diminishing returns, since energy was increasingly partitioned to body retention. Increasing energy supply pre partum enhances milk yield and content post partum, but exacerbates negative energy balance and its consequences.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Influence of energy and nutrient supply pre and post partum on performance of multiparous Simmental, Brown Swiss and Holstein cows in early lactation
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Influence of energy and nutrient supply pre and post partum on performance of multiparous Simmental, Brown Swiss and Holstein cows in early lactation
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Influence of energy and nutrient supply pre and post partum on performance of multiparous Simmental, Brown Swiss and Holstein cows in early lactation
      Available formats
      ×
Copyright
Corresponding author
E-mail: leonhard.gruber@raumberg-gumpenstein.at
Footnotes
Hide All
a

Both authors contributed equally.

Footnotes
References
Hide All
Agenäs S, Bursted E and Holtenius K 2003. Effects of feeding intensity during the dry period. 1. Feed intake, body weight, and milk production. Journal of Dairy Science 86, 870882.
Agricultural Food and Research Council (AFRC) 1993. Energy and protein requirements of ruminants. An advisory manual prepared by the AFRC Technical Committee on responses to nutrients. CAB International, Wallingford, UK.
Association of German Agricultural Analytic and Research Institutes (VDLUFA) 2007. Methods book Vol. III – The chemical analysis of feedstuffs (in German). VDLUFA-Press, Darmstadt, Germany.
Austrian Ministry of Health 2004. Animal keeping regulation. Special provision of the Federal Act on the Protection of Animals. BGBl. II Nr. 485/2004. Federal Chancellery of the Republic of Austria, Vienna, Austria.
Bauman DE 2000. Regulation of nutrient partitioning during lactation: Homeostasis and homeorhesis revisited. In Ruminant physiology: digestion, metabolism, growth, and reproduction (eds Cronjé, PB), pp 311328. CABI Publishing, Wallingford, UK.
Bertics SJ, Grummer RR, Cadorniga-Valino C and Stoddard EE 1992. Effect of prepartum dry matter intake on liver triglyceride concentration in early lactation. Journal of Dairy Science 75, 19141922.
Chilliard Y, Bocquier F and Doreau M 1998. Digestive and metabolic adaptations of ruminants to undernutrition, and consequences on reproduction. Reproduction Nutrition Development 38, 131152.
Coffey MP, Simm G, Oldham JD, Hill WG and Brotherstone S 2004. Genotype and diet effects on energy balance in the first three lactations of dairy cows. Journal of Dairy Science 87, 43184326.
Dann HM, Morin DE, Bollero GA, Murphy MR and Drackley JK 2005. Prepartum intake, postpartum induction of ketosis, and periparturient disorders affect the metabolic status of dairy cows. Journal of Dairy Science 88, 32493264.
Dann HM, Litherland NB, Underwood JP, Bionaz M, D’Angelo A, McFadden JW and Drackley JK 2006. Diets during far-off and close-up dry periods affect periparturient metabolism and lactation in multiparous cows. Journal of Dairy Science 89, 35633577.
Douglas GN, Overton TR, Bateman HG II, Dann HM and Drackley JK 2006. Prepartal plane of nutrition, regardless of dietary energy source, affects periparturient metabolism and dry matter intake in Holstein cows. Journal of Dairy Science 89, 21412157.
Drackley JK 1999. Biology of dairy cows during the transition period: the final frontier? Journal of Dairy Science 82, 22592273.
Drackley JK, Overton TR and Douglas GN 2001. Adaptations of glucose and long-chain fatty acid metabolism in liver of dairy cows during the periparturient period. Journal of Dairy Science 84, E100E112.
Edmonson AJ, Lean IJ, Weaver LD, Farver T and Webster G 1989. A body condition scoring chart for Holstein dairy cows. Journal of Dairy Science 72, 6878.
Friggens NC, Emmans GC, Kyriazakis I, Oldham JD and Lewis M 1998. Feed intake relative to stage of lactation for dairy cows consuming total mixed diets with a high or low ratio of concentrate to forage. Journal of Dairy Science 81, 22282239.
Friggens NC, Andersen JB, Larsen T, Aaes O and Dewhurst R 2005. Priming the dairy cow for lactation: a review of dry cow feeding strategies. Animal Research 53, 453473.
Friggens NC, Brun-Lafleur L, Faverdin P, Sauvant D and Martin O 2013. Advances in predicting nutrient partitioning in the dairy cow: recognizing the central role of genotype and its expression through time. Animal 7 (Suppl. 1), 89101.
German Society of Nutrition Physiology (GfE) 1991. Guidelines for determination of crude nutrient digestibility with ruminants (in German). Journal of Animal Physiology and Animal Nutrition 65, 229234.
German Society of Nutrition Physiology (GfE) 1995. Energetic feed evaluation for ruminants (in German). Proceedings of the Society of Nutrition Physiology 4, 121123.
German Society of Nutrition Physiology (GfE) 2001. Recommendations for the supply of energy and nutrients to dairy cows and heifers. Committee for requirement standards of the Society of Nutrition Physiology (in German). DLG-Verlag, Frankfurt am Main, Germany.
Giger S and Sauvant D 1983. Comparison of different methods for evaluation of digestibility coefficients of concentrate feeds in ruminants (in French). Annales de Zootechnie 32, 215246.
Grant RJ and Albright JL 1995. Feeding behavior and management factors during the transition period in dairy cattle. Journal of Animal Science 73, 27912803.
Grummer RR, Mashek DG and Hayirli A 2004. Dry matter intake and energy balance in the transition period. Veterinary Clinics of North America: Food Animal Practice 20, 447470.
Holcomb CS, Van Horn HH, Head HH, Hall MB and Wilcox CJ 2001. Effects of prepartum dry matter intake and forage percentage on postpartum performance of lactating dairy cows. Journal of Dairy Science 84, 20512058.
Huhtanen P 1998. Supply of nutrients and productive responses in dairy cows given diets based on restrictively fermented silage. Agricultural and Food Science 7, 219250.
Ingvartsen KL, Andersen HR and Foldager J 1992. Effect of sex and pregnancy on feed intake capacity of growing cattle. Acta Agriculturae Scandinavica, Section A – Animal Science 42, 4046.
Institut National de la Recherche Agronomique (INRA) 1989. Ruminant nutrition – recommended allowances and feed tables. John Libbey Eurotext, London, Paris.
Janovick NA and Drackley JK 2010. Prepartum dietary management of energy intake affects postpartum intake and lactation performance by primiparous and multiparous Holstein cows. Journal of Dairy Science 93, 30863102.
Kirchgessner M, Kreuzer M and Roth-Maier D 1986. Milk urea and protein content to diagnose energy and protein malnutrition of dairy cows. Archives of Animal Nutrition 36, 192197.
Knaus W 2009. Dairy cows trapped between performance demands and adaptability. Journal of the Science of Food and Agriculture 89, 11071114.
Kunz PL, Blum JW, Hart IC, Bickel H and Landis J 1985. Effects of different energy intakes before and after calving on food intake, performance and blood hormones and metabolites in dairy cows. Animal Production 40, 219231.
Lapierre H and Lobley GE 2001. Nitrogen recycling in the ruminant: a review. Journal of Dairy Science 84 (suppl. E), E223E236.
Law RA, Young FJ, Patterson DC, Kilpatrick DJ, Wylie ARG, Ingvartsen KL, Hameleers A, McCoy MA, Mayne CS and Ferris CP 2011. Effect of precalving and postcalving dietary energy level on performance and blood metabolite concentrations of dairy cows throughout lactation. Journal of Dairy Science 94, 808823.
Lins M, Gruber L and Obritzhauser W 2003. Effect of prepartum energy supply on the intake, body weight, body condition, milk yield and metabolism of dairy cows: a review (in German). Übersichten zur Tierernährung 31, 75120.
McNamara JP 1991. Regulation of adipose tissue metabolism in support of lactation. Journal of Dairy Science 74, 706719.
McNamara S, O’Mara FP, Rath M and Murphy JJ 2003. Effects of different transition diets on dry matter intake, milk production, and milk composition in dairy cows. Journal of Dairy Science 86, 23972408.
National Research Council (NRC) 2001. Nutrient requirement of dairy cattle, 7th edition, National Academy Press, Washington, DC, USA.
Park AF, Shirley JE, Titgemeyer EC, DeFrain JM, Cochran RC, Wickersham EE, Nagaraja TG and Johnson DE 2011. Characterization of ruminal dynamics in Holstein dairy cows during the periparturient period. Journal of Animal Physiology and Animal Nutrition 95, 571582.
Rabelo E, Rezende RL, Bertics SJ and Grummer RR 2003. Effects of transition diets varying in dietary energy density on lactation performance and ruminal parameters of dairy cows. Journal of Dairy Science 86, 916925.
Remppis S, Steingass H, Gruber L and Schenkel H 2011. Effects of energy intake on performance, mobilization and retention of body tissue, and metabolic parameters in dairy cows with special regard to effects of pre-partum nutrition on lactation – a review. Asian-Australasian Journal of Animal Sciences 24, 540572.
Roche JR 2007. Milk production responses to pre- and postcalving dry matter intake in grazing cows. Livestock Science 110, 1224.
Russell JB, O’Connor JD, Fox DG, Van Soest PJ and Sniffen CJ 1992. A net carbohydrate and protein system for evaluating cattle diets. I. Ruminal fermentation. Journal of Animal Science 70, 35513561.
Statistical Analysis Systems (SAS) Institute 2010. SAS/STAT 9.22 user’s guide. SAS Institute Inc, Cary, NC, USA.
Steinwidder A and Gruber L 2000. Feeding and animal factors influencing milk urea content of dairy cows (in German). Austrian Journal of Agricultural Research 51, 4957.
Tyrell HF, Reynolds CK and Baxter HD 1990. Energy metabolism of Jersey and Holstein cows fed total mixed diets with or without whole cottonseed. Journal of Dairy Science 73 (suppl. 1), 192 (Abstr.).
Urdl M, Gruber L, Obritzhauser W and Schauer A (submitted). Metabolic parameters and their relationship to energy balance in multiparous Simmental, Brown Swiss and Holstein cows in the periparturient period as influenced by energy and nutrient supply pre- and post-calving.
Van Soest PJ, Robertson JB and Lewis BA 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.
Weissbach F and Kuhla S 1995. Stoffverluste bei der Bestimmung des Trocken-massegehaltes von Silagen und Grünfutter: Entstehende Fehler und Möglichkeiten der Korrektur (in German). Übersichten zur Tierernährung 23, 189214.
Winkelman LA, Elsasser TH and Reynolds CK 2008. Limit-feeding a high-energy diet to meet energy requirements in the dry period alters plasma metabolite concentrations but does not affect intake or milk production in early lactation. Journal of Dairy Science 91, 10671079.
Yan T, Mayne CS, Keady TWJ and Agnew RE 2006. Effects of dairy cow genotype with two planes of nutrition on energy partitioning between milk and body tissue. Journal of Dairy Science 89, 10311042.
ZAR (Association of Austrian Cattle Breeders) 2012. Cattle Breeding in Austria 2011, Vienna, 173p.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

animal
  • ISSN: 1751-7311
  • EISSN: 1751-732X
  • URL: /core/journals/animal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 9
Total number of PDF views: 114 *
Loading metrics...

Abstract views

Total abstract views: 224 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th November 2017. This data will be updated every 24 hours.