Skip to main content Accessibility help
×
Home

Microbial ecosystem and methanogenesis in ruminants

  • D. P. Morgavi (a1), E. Forano (a2), C. Martin (a1) and C. J. Newbold (a3)
  • Please note a correction has been issued for this article.

Abstract

Ruminant production is under increased public scrutiny in terms of the importance of cattle and other ruminants as major producers of the greenhouse gas methane. Methanogenesis is performed by methanogenic archaea, a specialised group of microbes present in several anaerobic environments including the rumen. In the rumen, methanogens utilise predominantly H2 and CO2 as substrates to produce methane, filling an important functional niche in the ecosystem. However, in addition to methanogens, other microbes also have an influence on methane production either because they are involved in hydrogen (H2) metabolism or because they affect the numbers of methanogens or other members of the microbiota. This study explores the relationship between some of these microbes and methanogenesis and highlights some functional groups that could play a role in decreasing methane emissions. Dihydrogen (‘H2’ from this point on) is the key element that drives methane production in the rumen. Among H2 producers, protozoa have a prominent position, which is strengthened by their close physical association with methanogens, which favours H2 transfer from one to the other. A strong positive interaction was found between protozoal numbers and methane emissions, and because this group is possibly not essential for rumen function, protozoa might be a target for methane mitigation. An important function that is associated with production of H2 is the degradation of fibrous plant material. However, not all members of the rumen fibrolytic community produce H2. Increasing the proportion of non-H2 producing fibrolytic microorganisms might decrease methane production without affecting forage degradability. Alternative pathways that use electron acceptors other than CO2 to oxidise H2 also exist in the rumen. Bacteria with this type of metabolism normally occupy a distinct ecological niche and are not dominant members of the microbiota; however, their numbers can increase if the right potential electron acceptor is present in the diet. Nitrate is an alternative electron sinks that can promote the growth of particular bacteria able to compete with methanogens. Because of the toxicity of the intermediate product, nitrite, the use of nitrate has not been fully explored, but in adapted animals, nitrite does not accumulate and nitrate supplementation may be an alternative under some dietary conditions that deserves to be further studied. In conclusion, methanogens in the rumen co-exist with other microbes, which have contrasting activities. A better understanding of these populations and the pathways that compete with methanogenesis may provide novel targets for emissions abatement in ruminant production.

Copyright

Corresponding author

References

Hide All
Anderson, RC, Rasmussen, MA 1998. Use of a novel nitrotoxin-metabolising bacterium to reduce ruminal methane production. Bioresource Technology 64, 8995.
Anderson, RC, Rasmussen, MA, Jensen, NS, Allison, MJ 2000. Denitrobacterium detoxificans gen. nov., sp. nov., a ruminal bacterium that respires on nitrocompounds. International Journal of Systematic and Evolutionary Microbiology 50, 633638.
Anderson, RC, Carstens, GE, Miller, RK, Callaway, TR, Schultz, CL, Edrington, TS, Harvey, RB, Nisbet, DJ 2006. Effect of oral nitroethane and 2-nitropropanol administration on methane-producing activity and volatile fatty acid production in the ovine rumen. Bioresource Technology 97, 24212426.
Anderson, RC, Krueger, NA, Stanton, TB, Callaway, TR, Edrington, TS, Harvey, RB, Jung, YS, Nisbet, DJ 2008. Effects of select nitrocompounds on in vitro ruminal fermentation during conditions of limiting or excess added reductant. Bioresource Technology 99, 86558661.
Animut, G, Puchala, R, Goetsch, AL, Patra, AK, Sahlu, T, Varel, VH, Wells, J 2008. Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Animal Feed Science and Technology 144, 212227.
Attwood, GT, Kelly, WJ, Altermann, EH, Leahy, SC 2008. Analysis of the Methanobrevibacter ruminantium draft genome: understanding methanogen biology to inhibit their action in the rumen. Australian Journal of Experimental Agriculture 48, 8388.
Beauchemin, KA, McGinn, SM, Benchaar, C, Holtshausen, L 2009. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: effects on methane production, rumen fermentation, and milk production. Journal of Dairy Science 92, 21182127.
Bird, SH, Hegarty, RS, Woodgate, R 2008. Persistence of defaunation effects on digestion and methane production in ewes. Australian Journal of Experimental Agriculture 48, 152155.
Chandramoni, Tiwari, CM, Haque, N, Murari, L, Jadhao, SB, Khan, MY 2002. Energy balance in faunated and defaunated sheep on a ration high in concentrate to roughage (good quality) ratio. Pakistan Journal of Nutrition 1, 3133.
Chaucheyras-Durand, F, Masseglia, S, Fonty, G, Forano, E 2008. Development of hydrogenotrophic microorganisms and H2 utilisation in the rumen of gnotobiotically-reared lambs. Influence of the composition of the cellulolytic microbial community and effect of the feed additive Saccharomyces cerevisiae I-1077. In Proceedings of the 6th INRA-RRI symposium. Gut microbiome: functionality, interaction with the host and impact on the environment, Clermont-Ferrand, France, pp. 48–49.
Chen, M, Wolin, MJ 1979. Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria. Applied and Environmental Microbiology 38, 7277.
Dehority, BA 1971. Carbon dioxide requirement of various species of rumen bacteria. The Journal of Bacteriology 105, 7076.
Delgado, C, Rosegrant, M, Steinfeld, H, Ehui, S, Courbois, C 2001. Livestock to 2020: the next food revolution. Outlook on Agriculture 30, 2729.
Demeyer, DI 1991. Quantitative aspects of microbial metabolism in the rumen and hindgut. In Rumen microbial metabolism and ruminant digestion (ed. JP Jouany), pp. 217237. INRA Editions, Versailles, France.
Demeyer, DI, Fiedler, D, DeGraeve, KG 1996. Attempted induction of reductive acetogenesis into the rumen fermentation in vitro. Reproduction, Nutrition, Development 36, 233240.
Denman, SE, Tomkins, NW, McSweeney, CS 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiology Ecology 62, 313322.
Edwards, JE, McEwan, NR, Travis, AJ, Wallace, RJ 2004. 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie van Leeuwenhoek 86, 263281.
Eugène, M, Archimède, H, Sauvant, D 2004. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livestock Production Science 85, 8197.
FAO 2006. World agriculture: towards 2030/2050. Interim Report, Rome.
FAO 2009. Newsroom. Retrieved July 22, 2009, from www.fao.org/news/newsroom-home/
Finlay, BJ, Esteban, G, Clarke, KJ, Williams, AG, Embley, TM, Hirt, RP 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiology Letters 117, 157162.
Fonty, G, Williams, AG, Bonnemoy, F, Morvan, B, Withers, SE, Gouet, P 1997. Effect of Methanobrevibacter sp. MF1 inoculation on glycoside hydrolase and polysaccharide depolymerase activities, wheat straw degradation and volatile fatty acid concentrations in the rumen of gnotobiotically-reared lambs. Anaerobe 3, 383389.
Fonty, G, Joblin, K, Chavarot, M, Roux, R, Naylor, G, Michallon, F 2007. Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs. Applied and Environmental Microbiology 73, 63916403.
Gill, M, Smith, P, Wilkinson, JM 2010. Mitigating climate change: the role of domestic livestock. Animal 4, 323333.
Goel, G, Makkar, HPS, Becker, K 2008. Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials. Journal of Applied Microbiology 105, 770777.
Goel, G, Makkar, HP, Becker, K 2009. Inhibition of methanogens by bromochloromethane: effects on microbial communities and rumen fermentation using batch and continuous fermentations. The British Journal of Nutrition 101, 14841492.
Gould, DH, Cummings, BA, Hamar, DW 1997. In vivo indicators of pathologic ruminal sulphide production in steers with diet-induced polioencephalomalacia. Journal of Veterinary Diagnostic Investigation 9, 7276.
Grigg, D 1999. The changing geography of world food consumption in the second half of the twentieth century. The Geographical Journal 165, 111.
Gruby, D, Delafond, HMO 1843. Recherches sur des animalcules se développant en grand nombre dans l’estomac et dans les intestins, pendant la digestion des animaux herbivores et carnivores. Comptes Rendus de l’Académie des Sciences 17, 13041308.
Guan, H, Wittenberg, KM, Ominski, KH, Krause, DO 2006. Efficacy of ionophores in cattle diets for mitigation of enteric methane. Journal of Animal Science 84, 18961906.
Guo, Y, Liu, J, Zhu, W, McSweeney, C 2007. Shifts of rumen microbial population detected by real-time PCR when methanogenesis is inhibited. Journal of Animal and Feed Science 16, 107112.
Guo, YQ, Liu, JX, Lu, Y, Zhu, WY, Denman, SE, McSweeney, CS 2008. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Letters in Applied Microbilology 47, 421426.
Gutierrez-Banuelos, H, Anderson, RC, Carstens, GE, Slay, LJ, Ramlachan, N, Horrocks, SM, Callaway, TR, Edrington, TS, Nisbet, DJ 2007. Zoonotic bacterial populations, gut fermentation characteristics and methane production in feedlot steers during oral nitroethane treatment and after the feeding of an experimental chlorate product. Anaerobe 13, 2131.
Hegarty, RS 1999. Reducing rumen methane emissions through elimination of rumen protozoa. Australian Journal of Agricultural Research 50, 13211327.
Hegarty, RS, Bird, SH, Vanselow, BA, Woodgate, R 2008. Effects of the absence of protozoa from birth or from weaning on the growth and methane production of lambs. The British Journal of Nutrition 100, 12201227.
Hess, HD, Beuret, RA, Lotscher, M, Hindrichsen, IK, Machmüller, A, Carulla, JE, Lascano, CE, Kreuzer, M 2004. Ruminal fermentation, methanogenesis and nitrogen utilisation of sheep receiving tropical grass hay-concentrate diets offered with sapindus saponaria fruits and cratylia argentea foliage. Animal Science 79, 177189.
Hillman, K, Lloyd, D, Williams, AG 1988. Interactions between the methanogen Methanosarcina barkeri and rumen holotrich ciliate protozoa. Letters in Applied Microbiology 7, 4953.
Hillman, K, Williams, AG, Lloyd, D 1995. Postprandial variations in endogenous metabolic activities of ovine rumen ciliate protozoa. Animal Feed Science and Technology 52, 237247.
Hoehler, TM, Alperin, MJ, Albert, DB, Martens, CS 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochimica et Cosmochimica Acta 62, 17451756.
Holtshausen, L, Chaves, AV, Beauchemin, KA, McGinn, SM, McAllister, TA, Odongo, NE, Cheeke, PR, Benchaar, C 2009. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. Journal of Dairy Science 92, 28092821.
Hong, SH, Kim, JS, Lee, SY, In, YH, Choi, SS, Rih, J-K, Kim, CH, Jeong, H, Hur, CG, Kim, JJ 2004. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nature Biotechnology 22, 12751281.
Hungate, RE 1967. Hydrogen as an intermediate in the rumen fermentation. Archives of Microbiology 59, 158164.
Hungate, RE, Smith, W, Bauchop, T, Yu, I, Rabinowitz, JC 1970. Formate as an intermediate in the bovine rumen fermentation. Journal of Bacteriology 102, 389397.
Immig, I, Demeyer, D, Fiedler, D, Van Nevel, C, Mbanzamihigo, L 1996. Attempts to induce reductive acetogenesis into a sheep rumen. Archiv für Tiernahrung 49, 363370.
IPPC 2007. Climate change 2007: the physical science basis: summary for policymakers. Intergovernmental panel on climate change, Paris.
Itabashi, H, Kobayashi, T, Matsumoto, M 1984. The effects of rumen ciliate protozoa on energy metabolism and some constituents in rumen fluid and blood plasma of goats. Japanese Journal of Zoological Science 55, 248256.
Iwamoto, M, Asanuma, N, Hino, T 1999. Effects of nitrate combined with fumarate on methanogenesis, fermentation, and cellulose digestion by mixed ruminal microbes in vitro. Animal Science Journal 70, 471478.
Iwamoto, M, Asanuma, N, Hino, T 2002. Ability of Selenomonas ruminantium, Veillonella parvula, and Wolinella succinogenes to reduce nitrate and nitrite with special reference to the suppression of ruminal methanogenesis. Anaerobe 8, 209215.
Janssen, PH, Kirs, M 2008. Structure of the archaeal community of the rumen. Applied and Environmental Microbiology 74, 36193625.
Joblin, KN, Naylor, GE, Williams, AG 1990. Effect of Methanobrevibacter smithii xylanolytic activity of anaerobic ruminal fungi. Applied and Environmental Microbiology 56, 22872295.
Johnson, K, Huyler, M, Westberg, H, Lamb, B, Zimmerman, P 1994. Measurement of methane emissions from ruminant livestock using a SF6 tracer technique. Environmental Science & Technoogy 28, 359362.
Jordan, E, Lovett, DK, Hawkins, M, Callan, JJ, O’Mara, FP 2006a. The effect of varying levels of coconut oil on intake, digestibility and methane output from continental cross beef heifers. Animal Science 82, 859865.
Jordan, E, Kenny, D, Hawkins, M, Malone, R, Lovett, DK, O’Mara, FP 2006b. Effect of refined soy oil or whole soybeans on intake, methane output, and performance of young bulls. Journal of Animal Science 84, 24182425.
Kajikawa, H, Valdes, C, Hillman, K, Wallace, RJ, Newbold, CJ 2003. Methane oxidation and its coupled electron-sink reactions in ruminal fluid. Letters in Applied Microbiology 36, 354357.
Klieve, AV, Ouwerkerk, D 2007. Comparative greenhouse gas emissions from herbivores. In Proceedings of the 7th International Symposium on the Nutrition of Herbivores, Beijing, China, pp. 487–500.
Kreuzer, M, Kirchgessner, M, Muller, HL 1986. Effect of defaunation on the loss of energy in wethers fed different quantities of cellulose and normal or steamflaked maize starch. Animal Feed Science and Technology 16, 233241.
Larue, R, Yu, Z, Parisi, VA, Egan, AR, Morrison, M 2005. Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing. Environmental Microbiology 7, 530543.
Latham, MJ, Wolin, MJ 1977. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Applied Environmental Microbiology 34, 297301.
Le Van, TD, Robinson, JA, Ralph, J, Greening, RC, Smolenski, WJ, Leedle, JAZ, Schaefer, DM 1998. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis. Applied and Environmental Microbiology 64, 34293436.
Leadbetter, JR, Breznak, JA 1996. Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Applied and Environmental Microbiology 62, 36203631.
Lila, ZA, Mohammed, N, Kanda, S, Kurihara, M, Itabashi, H 2005. Sarsaponin effects on ruminal fermentation and microbes, methane production, digestibility and blood metabolites in steers.. Asian–Australasian Journal of Animal Science 18, 17461751.
Liu, Y, Whitman, WB 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences 1125, 171189.
Lopez, S, McIntosh, FM, Wallace, RJ, Newbold, CJ 1999. Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms. Animal Feed Science and Technology 78, 19.
Lovett, D, Lovell, S, Stack, L, Callan, J, Finlay, M, Conolly, J, O’Mara, FP 2003. Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livestock Production Science 84, 135146.
Machmüller, A, Kreuzer, M 1999. Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep. Canadian Journal of Animal Science 79, 6572.
Machmüller, A, Ossowski, DA, Kreuzer, M 2000. Comparative evaluation of the effects of coconut oil, oilseeds and crystalline fat on methane release, digestion and energy balance in lambs. Animal Feed Science and Technology 85, 4160.
Machmüller, A, Soliva, CR, Kreuzer, M 2003a. Methane-suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion. The British Journal of Nutrition 90, 529540.
Machmüller, A, Soliva, CR, Kreuzer, M 2003b. Effect of coconut oil and defaunation treatment on methanogenesis in sheep. Reproduction, Nutrition, Development 43, 4155.
Martin, C, Ferlay, A, Chilliard, Y, Doreau, M 2007a. Rumen methanogenesis of dairy cows in response to increasing levels of dietary extruded linseeds. In Energy and protein metabolism and nutrition, EAAP publication (ed. I Ortigues-Marty, N Miraux and W Brand-Williams), pp. 609610. Wageningen Academic Publishers, Wageningen, The Netherlands.
Martin, C, Dubroeucq, H, Micol, D, Agabriel, J, Doreau, M 2007b. Methane output from beef cattle fed different high-concentrate diets. In Proceedings of the British Society of Animal Science, Southport, UK, p. 46.
Mitsumori, M, Ajisaka, N, Tajima, K, Kajikawa, H, Kurihara, M 2002. Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers. Letters in Applied Microbiology 35, 251255.
Morgavi, DP, Jouany, JP, Martin, C 2008. Changes in methane emission and rumen fermentation parameters induced by refaunation in sheep. Australian Journal of Experimental Agriculture 48, 6972.
Morvan, B, Dore, J, Rieu-Lesme, F, Foucat, L, Fonty, G, Gouet, P 1994. Establishment of hydrogen-utilizing bacteria in the rumen of the newborn lamb. FEMS Microbiology Letters 117, 249256.
Morvan, B, Bonnemoy, F, Fonty, G, Gouet, P 1996. Quantitative determination of H2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals. Current Microbiology 32, 129133.
Mosoni, P, Chaucheyras-Durand, F, Bera-Maillet, C, Forano, E 2007. Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. Journal of Applied Microbiology 103, 26762685.
Mosoni, P, Gagen, E, Denman, R, McSweeney, C, Forano, E 2008. Quantification of rumen cellulolytic bacteria and analysis of bacterial diversity before and after establishment of Methanobrevibacter wolinii in methanogen-free lambs. In Proceedings of the 6th INRA-RRI symposium. Gut microbiome: functionality, interaction with the host and impact on the environment, Clermont-Ferrand, France, pp. 50–51.
Newbold, CJ, Lassalas, B, Jouany, JP 1995. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Letters in Applied Microbiology 21, 230234.
Nollet, L, Demeyer, D, Verstraete, W 1997. Effect of 2-bromoethanesulfonic acid and peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogenesis in the ruminal ecosystem by selective inhibition of methanogenesis. Applied and Environmental Microbiology 63, 194200.
Nollet, L, Mbanzamihigo, L, Demeyer, D, Verstraete, W 1998. Effect of the addition of Peptostreptococcus productus ATCC 35244 on reductive acetogenesis in the ruminal ecosystem after inhibition of methanogenesis by cell-free supernatant of Lactobacillus plantarum 80. Animal Feed Science and Technology 71, 4966.
Ohene-Adjei, S, Teather, RM, Ivan, M, Forster, RJ 2007. Postinoculation protozoan establishment and association patterns of methanogenic archaea in the ovine rumen. Applied and Environmental Microbiology 73, 46094618.
Oppermann, RA, Nelson, WO, Brown, RE 1961. In vivo studies of methanogenesis in the bovine rumen: dissimilation of acetate. Journal of General Microbiology 25, 103111.
Pavlostathis, SG, Miller, TL, Wolin, MJ 1990. Cellulose fermentation by continuous cultures of Ruminococcus albus and Methanobrevibacter smithii. Applied Microbiology and Biotechnology 33, 109116.
Pei, C-X, Mao, S-Y, Cheng, Y-F, Zhu, W-Y 2010. Diversity, abundance and novel 16S rRNA gene sequences of methanogens in rumen liquid, solid and epithelium fractions of Jinnan cattle. Animal 4, 2029.
Pen, B, Takaura, K, Yamaguchi, S, Asa, R, Takahashi, J 2007. Effects of Yucca schidigera and Quillaja saponaria with or without β 1-4 galacto-oligosaccharides on ruminal fermentation, methane production and nitrogen utilisation in sheep. Animal Feed Science and Technology 138, 7588.
Ranilla, MJ, Jouany, JP, Morgavi, DP 2007. Methane production and substrate degradation by rumen microbial communities containing single protozoal species in vitro. Letters in Applied Microbiology 45, 675680.
Sar, C, Mwenya, B, Santoso, B, Takaura, K, Morikawa, R, Isogai, N, Asakura, Y, Toride, Y, Takahashi, J 2005a. Effect of Escherichia coli W3110 on ruminal methanogenesis and nitrate/nitrite reduction in vitro. Animal Feed Science and Technology 118, 295306.
Sar, C, Mwenya, B, Santoso, B, Takaura, K, Morikawa, R, Isogai, N, Asakura, Y, Toride, Y, Takahashi, J 2005b. Effect of Escherichia coli wild type or its derivative with high nitrite reductase activity on in vitro ruminal methanogenesis and nitrate/nitrite reduction. Journal of Animal Science 83, 644652.
Sauvant, D, Schmidely, P, Daudin, JJ, St-Pierre, NR 2008. Meta-analyses of experimental data in animal nutrition. Animal 2, 12031214.
Sharp, R, Ziemer, CJ, Stern, MD, Stahl, DA 1998. Taxon-specific associations between protozoal and methanogen populations in the rumen and a model rumen system. FEMS Microbiology Ecology 26, 7178.
Shin, EC, Choi, BR, Lim, WJ, Hong, SY, An, CL, Cho, KM, Kim, YK, An, JM, Kang, JM, Lee, SS 2004. Phylogenetic analysis of archaea in three fractions of cow rumen based on the 16S rDNA sequence. Anaerobe 10, 313319.
Simon, J 2002. Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiology Reviews 26, 285309.
Skillman, LC, Evans, PN, Naylor, GE, Morvan, B, Jarvis, GN, Joblin, KN 2004. 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe 10, 277285.
Sliwinski, BJ, Kreuzer, M, Wettstein, HR, Machmüller, A 2002. Rumen fermentation and nitrogen balance of lambs fed diets containing plant extracts rich in tannins and saponins, and associated emissions of nitrogen and methane. Archiv für Tierernahnung 56, 379392.
Steinfeld, H, Gerber, P, Wassenaar, T, Castel, V, Rosales, M, de Haan, C 2006. Livestock’s long shadow environmental issues and options. FAO, p. 390.
Stewart, CS, Flint, HJ, Bryant, MP 1997. The rumen bacteria. In The rumen microbial ecosystem (ed. PN Hobson and CS Stewart), pp. 1072. Chapman & Hall, London.
Stumm, CK, Gijzen, HJ, Vogels, GD 1982. Association of methanogenic bacteria with ovine rumen ciliates. The British Journal of Nutrition 47, 9599.
Thauer, RK, Kaster, AK, Seedorf, H, Buckel, W, Hedderich, R 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Reviews Microbiology 6, 579591.
Tholen, A, Pester, M, Brune, A 2007. Simultaneous methanogenesis and oxygen reduction by Methanobrevibacter cuticularis at low oxygen fluxes. FEMS Microbiology Ecology 62, 303312.
Thornton, P, Herrero, M, Freeman, A, Mwai, O, Rege, E, Jones, P, McDermott, J 2007. Vulnerability, climate change and livestock – research opportunities and challenges for poverty alleviation. SAT Journal 4, 23.
Tokura, M, Ushida, K, Miyazaki, K, Kojima, Y 1997. Methanogens associated with rumen ciliates. FEMS Microbiology Ecology 22, 137143.
Tóthová, T, Piknová, M, Kišidayová, S, Javorský, P, Pristaš, P 2008. Distinctive archaebacterial species associated with anaerobic rumen protozoan Entodinium caudatum. Folia Microbiologica 53, 259262.
Ushida, K, Jouany, JP 1996. Methane production associated with rumen-ciliated protozoa and its effect on protozoan activity. Letters in Applied Microbiology 23, 129132.
Ushida, K, Newbold, CJ, Jouany, JP 1997. Interspecies hydrogen transfer between the rumen ciliate Polyplastron multivesiculatum and Methanosarcina barkeri. The Journal of General and Applied Microbiology 43, 129131.
van Hoek, AH, van Alen, TA, Sprakel, VS, Leunissen, JA, Brigge, T, Vogels, GD, Hackstein, JH 2000. Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Molecular Biology and Evolution 17, 251258.
Vogels, GD, Hoppe, WF, Stumm, CK 1980. Association of methanogenic bacteria with rumen ciliates. Applied Environmental Microbiology 40, 608612.
Weimer, PJ 1998. Manipulating ruminal fermentation: a microbial ecological perspective. Journal of Animal Science 76, 31143122.
Whitelaw, FG, Eadie, JM, Bruce, LA, Shand, WJ 1984. Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid proportions. The British Journal of Nutrition 52, 261275.
Williams, AG, Coleman, GS 1992. The rumen protozoa. Springer-Verlag New York Inc., New York.
Williams, AG, Withers, SE 1993. Changes in the rumen microbial population and its activities during the refaunation period after the reintroduction of ciliate protozoa into the rumen of defaunated sheep. Canadian Journal of Microbiology 39, 6169.
Williams, AG, Withers, SE, Joblin, KN 1994. The effect of cocultivation with hydrogen-consuming bacteria on xylanolysis by Ruminococcus flavefaciens. Current Microbiology 29, 133138.
Wina, E, Muetzel, S, Hoffmann, E, Makkar, HPS, Becker, K 2005. Saponins containing methanol extract of sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Animal Feed Science and Technology 121, 159174.
Wolin, M, Miller, T, Stewart, C 1997. Microbe-microbe interactions. In The rumen microbial ecosystem (ed. P Hobson and C Stewart), pp. 467491. Chapman & Hall, London.
World_Bank 2008. Rising food and fuel prices: addressing the risks to future generations. Retrieved September 2009, from http://siteresources.worldbank.org/DEVCOMMEXT/Resources/Food-Fuel.pdf2009
Yanez-Ruiz, DR, Hart, KJ, Belanche, A, Martin-Garcia, AI, Newbold, CJ 2007. The effect of protozoa on methane emissions by lambs. In Proceedings of the British Society of Animal Science, p. 47.
Yanez-Ruiz, DR, Hart, KJ, Martin-Garcia, AI, Ramos, S, Newbold, CJ 2008. Diet composition at weaning affects the rumen microbial population and methane emissions by lambs. Australian Journal of Experimental Agriculture 48, 186188.
Yu, Z, Yu, M, Morrison, M 2006. Improved serial analysis of V1 ribosomal sequence tags (SARST-V1) provides a rapid, comprehensive, sequence-based characterisation of bacterial diversity and community composition. Environmental Microbiology 8, 603611.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: