Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-16T15:29:01.767Z Has data issue: false hasContentIssue false

Phenotype definition is a main point in genome-wide association studies for bovine Mycobacterium avium ssp. paratuberculosis infection status

Published online by Cambridge University Press:  27 May 2014

J. Küpper
Affiliation:
Institut für Tierzucht und Haustiergenetik, Justus-Liebig-Universität, Ludwigstraße 21b, 35390 Gießen, Germany
H. Brandt
Affiliation:
Institut für Tierzucht und Haustiergenetik, Justus-Liebig-Universität, Ludwigstraße 21b, 35390 Gießen, Germany
K. Donat
Affiliation:
Thüringer Tierseuchenkasse, Victor-Goerttler-Str. 4, 07745 Jena, Germany
G. Erhardt*
Affiliation:
Institut für Tierzucht und Haustiergenetik, Justus-Liebig-Universität, Ludwigstraße 21b, 35390 Gießen, Germany
Get access

Abstract

Paratuberculosis caused by Mycobacterium avium ssp. paratuberculosis (MAP) causes economic losses and is present in dairy herds worldwide. Different studies used different diagnostic tests to detect infection status and are the basis of genome-wide association (GWA) studies with inconsistent results. Therefore, the aim of this study was to identify and compare genomic regions associated with MAP susceptibility in the same cohort of cattle using different diagnostic tests. The GWA study was performed in German Holsteins within a case-control assay using 305 cows tested for MAP by fecal culture and additional with four different commercial ELISA-tests. Genotyping was performed with the Illumina Bovine SNP50 BeadChip. The results using fecal culture or ELISA test led to the identification of different genetic loci. Two single-nucleotide polymorphisms showed significant association with the ELISA-status. However, no significant association for MAP infection could be confirmed. Our results show that the definition of the MAP-phenotype has an important impact on the outcome of GWA studies for paratuberculosis.

Type
Research Article
Copyright
© The Animal Consortium 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aulchenko, YS, Ripke, S, Isaacs, A and van Duijn, CM 2007. GenABEL: a R package for genome-wide associations analysis. Bioinformatics 23, 12941296.CrossRefGoogle Scholar
Chiodini, RJ, van Kruiningen, HJ and Merkal, RS 1984. Ruminant paratuberculosis (Johne’s disease): the current status and future prospects. The Cornell Veterinarian 74, 218262.Google ScholarPubMed
Collin, MT, Sockett, DC, Ridge, S and Cox, JC 1991. Evaluation of a commercial enzyme-linked immunosorbent assay for Johne’s disease. Journal of Clinical Microbiology 29, 272276.CrossRefGoogle Scholar
Collins, MT 2003. Paratuberculosis: review of present knowledge. Acta Veterinaria Scandinavica 44, 217221.Google Scholar
Coussens, PM 2001. Mycobacterium paratuberculosis and the bovine immune system. Animal Health Research Reviews 2, 141161.CrossRefGoogle ScholarPubMed
Dargatz, DA, Byrum, BA, Barber, LK, Sweeney, RW, Whitlock, RH, Shulaw, WP, Jacobson, RH and Stabel, JR 2001. Evaluation of a commercial ELISA for diagnosis of paratuberculosis in cattle. Journal of the American Veterinary Medical Association 218, 11631166.Google Scholar
Donat, K, Schau, U, Soschinka, A and Köhler, H 2012. Herd prevalence studies of Mycobacterium avium ssp. paratuberculosis (MAP) in cattle using serological tests: opportunities, limitations and costs. Berliner und Münchner Tierärztliche Wochenschrift 125, 361370.Google Scholar
Dreier, S, Khol, JL, Stein, B, Fuchs, K, Gutler, S and Baumgartner, W 2006. Serological, bacteriological and molecularbiological survey of paratuberculosis (Johne’s disease) in Austrian cattle. Journal of Veterinary Medicine B, Infectious Diseases and Veterinary Public Health 53, 477481.Google Scholar
Felaco, P, Castellani, ML, de Lutiis, MA, Felaco, M, Pandolfi, F, Salini, V, de Amicis, D, Vecchiet, J, Tete, S, Ciampoli, C, Conti, F, Cerulli, G, Caraffa, A, Antinolfi, P, Cuccurullo, C, Perrella, A, Theoharides, TC, Conti, P, Toniato, E, Kempuraj, D and Shaik, YB 2009. IL-31: a newly-discovered proinflammatory cytokine. Journal of Biological Regulators and Homeostatic Agents 23, 141147.Google Scholar
Gonda, MG, Kirkpatrick, BW, Shook, GE and Collins, MT 2007. Identification of a QTL on BTA20 affecting susceptibility to Mycobacterium avium ssp. paratuberculosis infection in US Holsteins. Animal Genetics 38, 389396.Google Scholar
Hinger, M, Brandt, H and Erhardt, G 2008. Heritability estimates for antibody response to Mycobacterium avium subspecies paratuberculosis in German Holstein Cattle. Journal of Dairy Science 91, 32373244.CrossRefGoogle ScholarPubMed
Kirkpatrick, BW, Shi, X, Shook, GE and Collins, MT 2011. Whole-genome association analysis of susceptibility to paratuberculosis in Holstein cattle. Animal Genetics 42, 149160.Google Scholar
Kohl, JL, Geisbauer, E, Wassertheurer, M, Revilla-Fernández, S, Damoser, J, Österreicher, E, Dünser, M, Kleb, U and Baumgartner, W 2012. Outcome of three commercial serum ELISAs and faecal detection of Mycobacterium avium subsp.paratuberculosis in consecutive samples from cattle herd with low prevalence of paratuberculosis (Johne’s disease). Transboundary and Emerging Disease 59, 197207.Google Scholar
Küpper, J, Brandt, H, Donat, K and Erhardt, G 2012. Heritability estimates for Mycobacterium avium subspecies paratuberculosis status of German Holstein cows tested by fecal culture. Journal of Dairy Science 95, 27342739.CrossRefGoogle ScholarPubMed
Levinson, D, Holmans, PA, Laurent, C, Riley, B, Pulver, AE, Gejman, PV, Schwab, SG, Williams, NM, Owen, MJ, Wildenauer, DB, Sanders, AR, Nestadt, G, Mowry, BJ, Wormley, B, Bauché, S, Soubigou, S, Ribble, R, Nertney, DA, Liang, KY, Martinoloch, L, Maier, W, Norton, N, Williams, H, Albus, M, Carpenter, EB, deMachi, N, Ewen-White, KR, Walsh, D, Jay, M, Deleuze, J-F, O’neill, FA, Papadimitriou, G, Weilbacher, A, Lerer, B, O’Donovan, MC, Dikeos, D, Silverman, JM, Kendler, KS, Mallet, J, Crowe, RR and Walters, M 2002. No major Schizophrenia locus detected on chromosome 1q in a large multicenter sample. Nature 296, 739740.Google Scholar
McKenna, SLB, Keefe, GP, Tiwari, A, van Leeuwen, J and Barkema, HW 2006. Review: Johne’s disease in Canada part II: disease impacts, risk factors, and control programs for dairy producers. The Canadian Veterinary Journal 47, 10891099.Google Scholar
Mendoza, JL, Lana, R and Diaz-Rubio, M 2009. Mycobacterium avium subspecies paratuberculosis and its relationship to Crohn’s disease. World Journal of Gastroenterology 15, 417422.Google Scholar
Minozzi, G, Buggiotti, L, Stella, A, Strozzi, F, Luini, M and Williams, JL 2010. Genetic loci involved in antibody response to Mycobacterium avium ssp. paratuberculosis in cattle. PLoS One 5, e11117.Google Scholar
Minozzi, G, Williams, JL, Stella, A, Strozzi, F, Luini, M, Settles, ML, Taylor, JF, Whitlock, RH, Zanella, R and Neibergs, HL 2012. Meta-analysis of two genome-wide association studies of bovine paratuberculosis. PLoS One 3, e32578.Google Scholar
Montgomery, GW and Sise, JA 1990. Extraction of DNA from sheep white blood cells. The New Zealand Journal of Agricultural Research 33, 437441.Google Scholar
Mucha, R, Bhide, MR, Chakurkar, EB, Novak, M and Mikula, I 2009. Toll-like receptors TLR1, TLR2 and TLR4 gene mutations and natural resistance to Mycobacterium avium subsp. paratuberculosis infection in cattle. Veterinary Immunology and Immunopathology 128, 381388.Google Scholar
Muskens, J, Barkema, HW, Russchen, E, van Maanen, K, Schukken, YH and Bakker, D 2000. Prevalence and regional distribution of paratuberculosis in dairy herds in the Netherlands. Veterinary Microbiology 77, 253261.CrossRefGoogle ScholarPubMed
Nielsen, SS and Toft, N 2006. Age-specific characteristics of ELISA and fecal culture for purpose-specific testing for paratuberculosis. Journal of Dairy Science 89, 569579.Google Scholar
Nielsen, SS and Toft, N 2009. A review of prevalences of paratuberculosis in farmed animals in Europe. Preventive Veterinary Medicine 88, 114.Google Scholar
Pant, SD, Schenkel, FS, Verschoor, CP, You, Q, Kelton, DF, Moore, SS and Karrow, NA 2010. A principal component regression based genome wide analysis approach reveals the presence of a novel QTL on BTA7 for MAP resistance in Holstein cattle. Genomics 95, 176182.Google Scholar
Pinedo, PJ, Buergelt, CD, Donovan, GA, Melendez, P, Morel, L, Wu, R, Langaee, TY and Rae, DO 2009a. Association between CARD15/NOD2 gene polymorphisms and paratuberculosis infection in cattle. Veterinary Microbiology 134, 346352.Google Scholar
Pinedo, PJ, Buergelt, CD, Donovan, GA, Melendez, P, Morel, L, Wu, R, Langaee, TY and Rae, DO 2009b. Candidate gene polymorphisms (BoIFNG, TLR4, SLC11A1) as risk factors for paratuberculosis infection in cattle. Preventive Veterinary Medicine 91, 189196.Google Scholar
Purdie, AC, Plain, KM, Begg, DJ, de Silva, K and Whittington, RJ 2011. Candidate gene and genome-wide association studies of Mycobacterium avium subsp. paratuberculosis infection in cattle and sheep: a review. Comparative Immunology, Microbiology and Infectious Diseases 34, 197208.CrossRefGoogle ScholarPubMed
Ruiz-Larranaga, O, Carrido, JM, Iriondo, M, Manzano, C, Molina, E, Koets, AP, Rutten, VPMG, Juste, RA and Estonba, A 2010a. Infection association between bovine NOD2 polymorphisms and infection by Mycobacterium avium subsp. Paratuberculosis in Holstein-Frisian cattle. Animal Genetics 41, 652655.Google Scholar
Ruiz-Larranaga, O, Garrido, JM, Manzano, C, Iriondo, M, Molina, E, Gils, A, Koets, AP, Rutten, VPMG, Juste, RA and Estonba, A 2010b. Identification of single polymorphisms in the bovine solute carrier family 11 member 1 (SLC11A1) gene and their association with infection by Mycobacterium avium subspecies paratuberculosis . Journal of Dairy Science 93, 17131721.CrossRefGoogle ScholarPubMed
Settles, M, Zanella, R, McKay, SD, Schnabel, RD, Taylor, JF, Whitlock, R, Schukken, Y, van Kessel, JS, Smith, JM and Neibergs, H 2009. A whole genome association analysis identifies loci associated with Mycobacterium avium ssp. paratuberculosis infection status in US Holstein cattle. Animal Genetics 40, 655662.Google Scholar
Sweeney, RW, Whitlock, RH, Buckley, CL and Spencer, P 1995. Evaluation of a commercial enzyme-linked immunosorbent assay for the diagnosis of paratuberculosis in dairy cattle. The Journal of Veterinary Diagnostic Investigation 7, 488493.Google Scholar
van Hulzen, KJE, Nielen, M, Koets, AP, de Jong, G, van Arendonk, JAM and Heuven, HCM 2011. Effect of herd prevalence on heritability estimates of antibody response to Mycobacterium avium subspecies paratuberculosis . Journal of Dairy Science 94, 992997.Google Scholar
van Hulzen, KJE, Schopen, GCB, van Arendonk, JAM, Nielen, M, Koets, AP, Schrooten, C and Heuven, HCM 2012. Genome-wide association study to identify chromosomal regions associated with antibody response to Mycobacterium avium subspecies paratuberculosis in milk of Dutch Holstein-Friesians. Journal of Dairy Science 95, 27402748.Google Scholar
Verschoor, CP, Pant, SD, You, Q, Schenkel, FS, Kelton, DF and Karrow, NA 2010. Polymorphisms in the gene encoding bovine interleukin-10 receptor alpha are associated with Mycobacterium avium ssp. paratuberculosis infection status. BMC Genetics 11, 23.CrossRefGoogle ScholarPubMed
Whitlock, RH, Wells, SJ, Sweeney, RW and VanTiem, J 2000. ELISA and fecal culture for paratuberculosis (Johne’s disease): sensitivity and specificity of each method. Veterinary Microbiology 77, 387398.Google Scholar
Supplementary material: PDF

Küpper Supplementary Material

Table S1

Download Küpper Supplementary Material(PDF)
PDF 64.5 KB