Skip to main content Accessibility help

Rabbit milk protein genes: from mRNA identification to chromatin structure

  • G. Jolivet (a1), N. Daniel-Carlier (a1), D. Thépot (a1), S. Rival-Gervier (a1) and L. M. Houdebine (a1)...


Milk protein genes are among the most intensively expressed and they are active only in epithelial mammary cells of lactating animals. They code for proteins which represent 30% of the proteins consumed by humans in developed countries. Mammary gland development occurs essentially during each pregnancy. This offers experimenters attractive models to study the expression mechanisms of genes controlled by known hormones and factors (prolactin, glucocorticoids, progesterone, insulin-like growth factor-1 and others) as well as extracellular matrix. In the mid-1970s, it became possible to identify and quantify mRNAs from higher living organisms using translation in reticulocyte lysate. A few years later, the use of radioactive cDNAs as probes made it possible for the quantification of mRNA in various physiological situations using hybridisation in the liquid phase. Gene cloning offered additional tools to measure milk protein mRNAs and also to identify transcription factors. Gene transfer in cultured mammary cells and in animals contributed greatly to these studies. It is now well established that most if not all genes of higher eukaryotes are under the control of multiple distal regulatory elements and that local modifications of the chromatin structure play an essential role in the mechanisms of differentiation from embryos to adults. The technique, known as ChIP (chromatin immunoprecipitation), is being implemented to identify the factors that modify chromatin structure at the milk protein gene level during embryo development, mammogenesis and lactogenesis, including the action of hormones and extracellular matrix. Transgenesis is not just a tool to study gene regulation and function, it is also currently used for various biotechnological applications including the preparation of pharmaceutical proteins in milk. This implies the design of efficient vectors capable of directing the secretion of recombinant proteins in milk at a high concentration. Milk protein gene promoters and long genomic-DNA fragments containing essentially all the regulatory elements of milk protein genes are used to optimise recombinant protein production in milk.


Corresponding author


Hide All
Al-Gubory, KH, Houdebine, LM 2006. In vivo imaging of green fluorescent protein expressing cells in transgenic animals using fibered confocal fluorescence microscopy. European Journal of Cell Biology 85, 837845.
Assairi, L, Delouis, C, Gaye, P, Houdebine, LM, Bousquet, MO, Denamur, R 1974. Inhibition by progesterone of the lactogenic effect of prolactin in the pseudopregnant rabbit. Biochemical Journal 144, 245252.
Attal, J, Théron, MC, Puissant, C, Houdebine, LM 1999. Effect of intercistronic length on internal ribosome entry site (IRES) efficiency in bicistronic mRNA. Gene Expression 8, 299309.
Baranyi, M, Aszodi, A, Devinoy, E, Fontaine, ML, Houdebine, LM, Bosze, Z 1996. Structure of the rabbit κ-casein encoding gene: expression of the cloned gene in the mammary gland of transgenic mice. Gene 174, 2734.
Baranyi, M, Hiripi, L, Szabó, L, Catunda, AP, Harsänyi, I, Komäromy, P, Bősze, Z 2007. Isolation and some effects of functional, low-phenylalanine κ-casein expressed in the milk of transgenic rabbits. Journal of Biotechnology 128, 383392.
Bischoff, R, Degryse, E, Perraud, F, Dalemans, W, Ali-Hadji, D, Thépot, D, Devinoy, E, Houdebine, LM, Pavirani, A 1992. A 17.6 kbp region located upstream of the rabbit WAP gene directs high level expression of a functional human protein variant in transgenic mouse milk. FEBS Letters 305, 265268.
Bleck, GT, White, BR, Miller, DJ, Wheeler, MB 1998. Production of bovine alpha-lactalbumin in the milk of transgenic pigs. Journal of Animal Science 76, 30723078.
Bodrogi, L, Brands, R, Raaben, W, Seinen, W, Baranyi, M, Fiechter, D, Bosze, Z 2006. High level expression of tissue-nonspecific alkaline phosphatase in the milk of transgenic rabbits. Transgenic Research 15, 627636.
Bösze, Z, Houdebine, LM 2006. Application of rabbits in biomedical research: a review. World Rabbit Science 14, 114.
Brophy, B, Smolenski, G, Wheeler, T, Wells, D, L’Huillier, P, Laible, G 2003. Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nature Biotechnology 21, 138139.
Chourrout, D, Guyomard, R, Houdebine, LM 1986. High efficiency gene transfer in rainbow trout (Salmo gairdneri Rich.) by microinjection into egg cytoplasm. Aquaculture 51, 143150.
Cirillo, LA, Lin, FR, Cuesta, I, Friedman, D, Jarnik, M, Zaret, KS 2002. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Molecular Cell 9, 279289.
Devinoy, E, Houdebine, LM, Delouis, C 1978. Role of prolactin and glucocorticoids in the expression of casein genes in rabbit mammary gland organ culture. Quantification of casein mRNA. Biochimica Biophysica Acta 517, 360366.
Devinoy, E, Hubert, C, Schaerer, E, Houdebine, LM, Kraehenbuhl, JP 1988a. Sequence of the rabbit whey acidic protein cDNA. Nucleic Acids Research 16, 8180.
Devinoy, E, Schaerer, E, Jolivet, G, Fontaine, ML, Kraehenbuhl, JP, Houdebine, LM 1988b. Sequence of the rabbit alpha S1-casein cDNA. Nucleic Acids Research 16, 11813.
Devinoy, E, Malienou-N’Gassa, R, Thépot, D, Puissant, C, Houdebine, LM 1991. Hormone responsive elements within the upstream sequences of the rabbit whey acidic protein (WAP) gene direct chloramphenicol acetyl transferase (CAT) reporter gene expression in transfected rabbit mammary cells. Molecular and Cellular Endocrinology 81, 185193.
Devinoy, E, Thépot, D, Stinnakre, MG, Fontaine, ML, Grabowski, H, Puissant, C, Pavirani, A, Houdebine, LM 1994. High level production of human growth hormone in the milk of transgenic mice: the upstream region of the rabbit whey protein (WAP) gene targets transgene expression to the mammary gland. Transgenic Research 3, 7989.
Devinoy, E, Montoliu, L, Baranyi, M, Thépot, D, Hiripi, L, Fontaine, ML, Bodrogi, L, Bosze, Z 2005. Analysis of the efficiency of the rabbit whey acidic protein gene 5′ flanking region in controlling the expression of homologous and heterologous linked genes. Journal of Dairy Research 72, 113119.
Doppler, W 1994. Regulation of gene expression by prolactin. Reviews of Physiology, Biochemistry and Pharmacology 124, 93130.
Edwards, GM, Wilford, FH, Liu, X, Hennighausen, L, Djiane, J, Streuli, CH 1998. Regulation of mammary differentiation by extracellular matrix involves protein-tyrosine phosphatases. Journal of Biological Chemistry 273, 94959500.
Galet, C, Le Bourhis, CM, Chopineau, M, Le Griec, G, Perrin, A, Magallon, T, Attal, J, Viglietta, C, Houdebine, LM, Guillou, F 2001. Expression of a single beta–alpha chain protein of equine LH/CG in milk of transgenic rabbits and its biological activity. Molecular and Cellular Endocrinology 174, 3140.
Gaye, P, Houdebine, LM 1975. Isolation and characterization of casein mRNAs from lactating ewe mammary glands. Nucleic Acids Research 2, 707722.
Gaye, P, Houdebine, LM, Pétrissant, G, Denamur, R 1973. Protein synthesis in mammary gland. Acta Endocrinologica. Supplementum 180, 426463.
Ghareeb, BA, Thépot, D, Puissant, C, Cajero-Juarez, M, Houdebine, LM 1998. Cloning, structural organization and tissue-specific expression of the rabbit transferrin gene. Biochimica et Biophysica Acta 1398, 387392.
Giraldo, P, Rival-Gervier, S, Houdebine, LM, Montoliu, L 2003. The potential benefits of insulators on heterogonous constructs in transgenic. Transgenic Research 12, 751755.
Grabowski, H, Le Bars, D, Chene, N, Attal, J, Malienou-Ngassa, R, Puissant, C, Houdebine, LM 1991. Rabbit whey acidic protein concentration in milk, serum, mammary gland extract, and culture medium. Journal of Dairy Science 74, 41434150.
Hajjoubi, S, Rival-Gervier, S, Hayes, H, Floriot, S, Eggen, A, Piumi, F, Chardon, P, Houdebine, LM, Thépot, D 2006. Ruminant genome no longer contains whey acidic protein gene but only a pseudogene. Gene 370, 104112.
Hiripi, L, Baranyi, M, Szabó, L, Tóth, S, Fontaine, ML, Devinoy, E, Bösze, Z 2000. Effect of rabbit kappa-casein expression on the properties of milk from transgenic mice. Journal of Dairy Research 67, 541550.
Houdebine, LM 1976. Effects of prolactin and progesterone on expression of casein genes. Titration of casein mRNA by hybridization with complementary DNA. European. Journal of Biochemistry 68, 219225.
Houdebine, LM 1979. Role of prolactin in the expression of casein genes in the virgin rabbit. Cell Differentiation 8, 4959.
Houdebine, LM 2002. Antibody manufacture in transgenic animals, comparisons with other systems. Current Opinion in Biotechnology 13, 625629.
Houdebine, LM 2003a. Preparation of recombinant proteins in milk. In Recombinant gene expression protocols, methods in molecular biology , vol. 267 (ed. E Balbas), pp. 485494. Human Press, NJ, USA.
Houdebine, LM 2003b. Animal transgenesis and cloning. Wiley and Sons, Hoboken, NJ, USA.
Houdebine, LM 2004. Preparation of recombinant proteins in milk. Methods in Molecular Biology 267, 485494.
Houdebine, LM 2005. Use of transgenic animals to improve human health and animal production. Reproduction in Domestic Animals 40, 269281.
Houdebine LM 2007a. Production of pharmaceutical proteins by transgenic animals. Comparative Immunology, Microbiology and Infectious Diseases, in press.
Houdebine, LM 2007b. Transgenic animal models and target validation. Methods in Molecular Biology 360, 163202.
Houdebine, LM, Gaye, P 1975a. Absence of mRNA for casein in free polysomes of lactating ewe mammary gland. Nucleic Acids Research 2, 165178.
Houdebine, LM, Gaye, P 1975b. Regulation of casein synthesis in the rabbit mammary gland. Titration of mRNA activity for casein under prolactin and progesterone treatments. Molecular and Cellular Endocrinology 3, 3755.
Houdebine, LM, Gaye, P 1976. Purification of the mRNAs for ewe alphaS1-casein and beta-casein by immunoprecipitation of polysomes. European Journal of Biochemistry 63, 914.
Houdebine, LM, Gaye, P, Favre, A 1974. Lack of poly(A) sequence in half of the messenger RNA coding for ewe alpha S casein. Nucleic Acids Research 1, 413426.
Houdebine, LM, Delouis, C, Devinoy, E 1978a. Post-transcriptional stimulation of casein synthesis by thyroid hormone. Biochimie 60, 809812.
Houdebine, LM, Devinoy, E, Delouis, C 1978b. Role of spermidine in casein gene expression in the rabbit. Biochimie 60, 735741.
Houdebine, LM, Devinoy, E, Delouis, C 1978c. Stabilization of casein mRNA by prolactin and glucocorticoids. Biochimie 60, 5763.
Houdebine, LM, Farmer, SW, Prunet, P 1981. Induction of rabbit casein synthesis in organ culture by tilapia prolactin and growth hormone. General and Comparative Endocrinology 45, 6165.
Houdebine, LM, Attal, J, Vilotte, JL 2002. Vector design for transgene expression. In Transgenic animal technology, 2nd edition (ed. A Carl and E Pinkert), pp. 419458. Academic Press, San Diego, CA, USA.
Jolivet, G, Devinoy, E, Fontaine, ML, Houdebine, LM 1992. Structure of the gene encoding rabbit αs1-casein. Gene 113, 257262.
Jolivet, G, L’Hotte, C, Pierre, S, Tourkine, N, Houdebine, LM 1996. A MGF/STAT5 binding site is necessary in the distal enhancer for high prolactin induction of transfected rabbit alpha s1-casein-CAT gene transcription. FEBS Letters 389, 257262.
Jolivet, G, Pantano, T, Houdebine, LM 2005. Regulation by the extracellular matrix (EMC) of prolactin-induced alpha-s1-casein gene expression in rabbit primary cells. Role of STAT5, C/EBP and chromatin structure. Journal of Cellular Biochemistry 95, 313327.
Koles, K, van Berkel, PH, Pieper, FR, Nuijens, JH, Mannesse, ML, Vliegenthart, JF, Kamerling, JP 2004. N- and O-glycans of recombinant human C1 inhibitor expressed in the milk of transgenic rabbits. Glycobiology 14, 5164.
de Laat, W, Grosveld, F 2003. Spatial organization of gene expression: the active chromatin hub. Chromosome Research 11, 447459.
Lomvardas, S, Thanos, D 2002. Opening chromatin. Molecular Cell 9, 209211.
Long, X, Miano, JM 2007. Remote control of gene expression. Journal of Biological Chemistry 282, 1594115945.
Martel, P, Houdebine, LM, Teyssot, B, Djiane, J 1983. Effects of phorbol esters on multiplication and differentiation of mammary cells. Biologie Cellulaire 49, 119126.
Martinet, J, Houdebine, LM, Head, HH 1999. Biology of lactation second edition. INRA Editions Publisher, Versailles, France.
Massoud, M, Attal, J, Thépot, D, Pointu, H, Stinnakre, MG, Théron, MC, Lopez, C, Houdebine, LM 1996. The deleterious effects of human erythropoietin gene driven by the rabbit whey acidic protein gene promoter in transgenic rabbits. Reproduction, Nutrition, Development 36, 555563.
Millot, B, Fontaine, ML, Thépot, D, Devinoy, E 2001. A distal region, hypersensitive to DNase I, plays a key role in regulating rabbit whey acidic protein gene expression. Biochemical Journal 359, 557565.
O’Neill, LP, VerMilyea, MD, Turner, BM 2006. Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nature Genetics 38, 835841.
Pantano, T, Jolivet, G, Prince, S, Menck-Le Bourhis, C, Maeder, C, Viglietta, C, Rival, S, Houdebine, LM 2002. Effect of the rabbit αs1-casein gene distal enhancer on the expression of a reporter gene in vitro and in vivo. Biochemical and Biophysical Research Communications 290, 5361.
Pantano, T, Rival-Gervier, S, Menck-Le Bourhis, C, Maeder, C, Viglietta, C, Houdebine, LM, Jolivet, G 2003. In vitro and in vivo effects of a multimerized αS-1 casein enhancer on whey acidic protein gene promoter activity. Molecular Reproduction and Development 65, 262268.
Pierre, S, Jolivet, G, Devinoy, E, Théron, MC, Malienou-N’Gassa, R, Puissant, C, Houdebine, LM 1992. A distal region enhances the prolactin induced promoter activity of the rabbit alpha s1-casein gene. Molecular and Cellular Endocrinology 87, 147156.
Pierre, S, Jolivet, G, Devinoy, E, Houdebine, LM 1994. A combination of distal and proximal regions is required for efficient prolactin regulation of transfected rabbit alpha s1-casein chloramphenicol acetyltransferase constructs. Molecular Endocrinology 8, 17201730.
Praskova, ML, Jolivet, G, Houdebine, LM, Mitev, V 2005. Possible involvement of protein kinase Cμ in the activation of rabbit αS1-casein gene. Bulletin de l’Académie des Sciences Bulgares 58, 12291234.
Puissant, C, Bayat-Sarmadi, M, Devinoy, E, Houdebine, LM 1994. Variation of transferrin mRNA concentration in the rabbit mammary gland during the pregnancy–lactation–weaning cycle and in cultured mammary cells. A comparison with the other major milk protein mRNAs. European Journal of Endocrinology 130, 522529.
Rival, S, Attal, J, Delville-Giraud, C, Yerle, M, Laffont, P, Rogel-Gaillard, C, Houdebine, LM 2001. Cloning, transcription and chromosomal localization of the porcine whey acidic protein gene and its expression in HC11 cell line. Gene 267, 3747.
Rival-Gervier, S, Viglietta, C, Maeder, C, Attal, J, Houdebine, LM 2002. Position-independent and tissue specific expression of porcine whey acidic protein gene from a bacterial artificial chromosome in transgenic mice. Molecular Reproduction and Development 63, 161167.
Rival-Gervier, S, Maeder, C, Viglietta, C, Prince, S, Houdebine, LM 2003. Effect of 5′HS4 insulator on rabbit WAP gene action in transgenic mice. Transgenic Research 12, 723730.
Saidi, S, Rival-Gervier, S, Daniel-Carlier, N, Thépot, D, Morgenthaler, C, Viglietta, C, Prince, S, Passet, B, Houdebine, LM, Jolivet, G 2007. Distal control of the pig whey acidic protein (WAP) locus in transgenic mice. Gene 15, 97107.
Schaerer, E, Devinoy, E, Kraehenbuhl, JP, Houdebine, LM 1988. Sequence of the rabbit beta-casein cDNA: comparison with other casein cDNA sequences. Nucleic Acids Research 16, 11814.
Schmidt, C 2006. Belated approval of first recombinant protein from animal. Nature Biotechnology 24, 877.
Shackleton, M, Vaillnat, F, Simpson, KJ, Stingl, J, Smyth, GK, Asselin-Labat, ML, Wu, L, Lindeman, GJ, Visvader, JE 2006. Generation of a functional mammary gland from a single stem cell. Nature 439, 8488.
Shuster, RC, Houdebine, LM, Gaye, P 1976. Studies on the synthesis of casein messenger RNA during pregnancy in the rabbit. European Journal of Biochemistry 71, 193199.
Soler, E, Le Saux, A, Guinut, F, Passet, B, Cohen, R, Merle, C, Charpilienne, A, Fourgeux, C, Sorel, V, Piriou, A, Schwartz-Cornil, I, Cohen, J, Houdebine, LM 2005. Production of two vaccinating recombinant rotavirus proteins in the milk of transgenic rabbits. Transgenic Research 14, 833844.
Soler, E, Thépot, D, Rival-Gervier, S, Jolivet, G, Houdebine, LM 2006. Preparation of recombinant proteins in milk to improve human and animal health. Reproduction, Nutrition, Development 46, 579588.
Sternlicht, MD 2006. Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Research 8, 201.
Strömqvist, M, Houdebine, LM, Andersson, JO, Edlund, A, Johanson, T, Viglietta, C, Puissant, C, Hannson, L 1996. Recombinant human extracellular superoxide dismutase produced in milk of transgenic rabbits. Transgenic Research 6, 271278.
Taboit-Dameron, F, Malassagne, B, Viglietta, C, Puissant, C, Leroux-Coyau, M, Chereau, C, Attal, J, Weill, B, Houdebine, LM 1999. Association of the 5′HS4 sequence of the chicken beta-globin locus control region with human EF1 alpha gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits. Transgenic Research 8, 223235.
Thépot, D, Devinoy, E, Fontaine, ML, Hubert, C, Houdebine, LM 1990a. Complete sequence of the rabbit whey acidic protein gene. Nucleic Acids Research 18, 3641.
Thépot, D, Devinoy, E, Fontaine, ML, Houdebine, LM 1990b. Structure of the gene encoding rabbit beta-casein. Gene 97, 301306.
Thépot, D, Devinoy, E, Fontaine, ML, Stinnakre, MG, Massoud, M, Kann, G, Houdebine, LM 1995. Rabbit whey acidic protein gene upstream region controls high-level expression of bovine growth hormone in the mammary gland of transgenic mice. Molecular Reproduction and Development 42, 261267.
Tong, Q, Hotamisligh, GS 2007. Cell fate in the mammary gland. Nature 445, 724726.
Tourkine, N, Schindler, C, Larose, M, Houdebine, LM 1995. Activation of STAT factors by prolactin, interferon-gamma, growth hormones, and a tyrosine phosphatase inhibitor in rabbit primary mammary epithelial cells. Journal of Biological Chemistry 270, 2095220961.


Rabbit milk protein genes: from mRNA identification to chromatin structure

  • G. Jolivet (a1), N. Daniel-Carlier (a1), D. Thépot (a1), S. Rival-Gervier (a1) and L. M. Houdebine (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed