Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T23:56:04.670Z Has data issue: false hasContentIssue false

Rumen microbial (meta)genomics and its application to ruminant production

Published online by Cambridge University Press:  01 March 2012

D. P. Morgavi*
Affiliation:
INRA, UR1213 Herbivores, Site de Theix, F-63122 Saint-Genès-Champanelle, France
W. J. Kelly
Affiliation:
Ruminant Nutrition and Animal Health, AgResearch, Private Bag 11008, Palmerston North 4442, New Zealand
P. H. Janssen
Affiliation:
Ruminant Nutrition and Animal Health, AgResearch, Private Bag 11008, Palmerston North 4442, New Zealand
G. T. Attwood
Affiliation:
Ruminant Nutrition and Animal Health, AgResearch, Private Bag 11008, Palmerston North 4442, New Zealand
Get access

Abstract

Meat and milk produced by ruminants are important agricultural products and are major sources of protein for humans. Ruminant production is of considerable economic value and underpins food security in many regions of the world. However, the sector faces major challenges because of diminishing natural resources and ensuing increases in production costs, and also because of the increased awareness of the environmental impact of farming ruminants. The digestion of feed and the production of enteric methane are key functions that could be manipulated by having a thorough understanding of the rumen microbiome. Advances in DNA sequencing technologies and bioinformatics are transforming our understanding of complex microbial ecosystems, including the gastrointestinal tract of mammals. The application of these techniques to the rumen ecosystem has allowed the study of the microbial diversity under different dietary and production conditions. Furthermore, the sequencing of genomes from several cultured rumen bacterial and archaeal species is providing detailed information about their physiology. More recently, metagenomics, mainly aimed at understanding the enzymatic machinery involved in the degradation of plant structural polysaccharides, is starting to produce new insights by allowing access to the total community and sidestepping the limitations imposed by cultivation. These advances highlight the promise of these approaches for characterising the rumen microbial community structure and linking this with the functions of the rumen microbiota. Initial results using high-throughput culture-independent technologies have also shown that the rumen microbiome is far more complex and diverse than the human caecum. Therefore, cataloguing its genes will require a considerable sequencing and bioinformatic effort. Nevertheless, the construction of a rumen microbial gene catalogue through metagenomics and genomic sequencing of key populations is an attainable goal. A rumen microbial gene catalogue is necessary to understand the function of the microbiome and its interaction with the host animal and feeds, and it will provide a basis for integrative microbiome–host models and inform strategies promoting less-polluting, more robust and efficient ruminants.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, LA, Coates, JD 2000. Disparity between bacterial phylogeny and physiology – comparing 16S rRNA sequences to assess relationships can be a powerful tool, but its limitations need to be considered. ASM News 66, 714715.Google Scholar
Acinas, SG, Marcelino, LA, Klepac-Ceraj, V, Polz, MF 2004. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. Journal of Bacteriology 186, 26292635.CrossRefGoogle ScholarPubMed
Amaya, KR, Kocherginskaya, SA, Mackie, RI, Cann, IKO 2005. Biochemical and mutational analysis of glutamine synthetase type III from the rumen anaerobe Ruminococcus albus 8. Journal of Bacteriology 187, 74817491.Google Scholar
Arumugam, M, Raes, J, Pelletier, E, Le Paslier, D, Yamada, T, Mende, DR, Fernandes, GR, Tap, J, Bruls, T, Batto, J-M, Bertalan, M, Borruel, N, Casellas, F, Fernandez, L, Gautier, L, Hansen, T, Hattori, M, Hayashi, T, Kleerebezem, M, Kurokawa, K, Leclerc, M, Levenez, F, Manichanh, C, Nielsen, HB, Nielsen, T, Pons, N, Poulain, J, Qin, J, Sicheritz-Ponten, T, Tims, S, Torrents, D, Ugarte, E, Zoetendal, EG, Wang, J, Guarner, F, Pedersen, O, de Vos, WM, Brunak, S, Dore, J, Weissenbach, J, Ehrlich, SD, Bork, P 2011. Enterotypes of the human gut microbiome. Nature 473, 174180.Google Scholar
Attwood, GT, Cookson, AC, Kelly, WJ 2004. Genome sequencing of Clostridium proteoclasticum. Reproduction Nutrition Development 44 (Suppl 1), S20.Google Scholar
Attwood, GT, Kelly, WJ, Altermann, EH, Leahy, SC 2008. Analysis of the Methanobrevibacter ruminantium draft genome: understanding methanogen biology to inhibit their action in the rumen. Australian Journal of Experimental Agriculture 48, 8388.CrossRefGoogle Scholar
Baar, C, Eppinger, M, Raddatz, G, Simon, J, Lanz, C, Klimmek, O, Nandakumar, R, Gross, R, Rosinus, A, Keller, H, Jagtap, P, Linke, B, Meyer, F, Lederer, H, Schuster, SC 2003. Complete genome sequence and analysis of Wolinella succinogenes. Proceedings of the National Academy of Sciences of the United States of America 100, 1169011695.Google Scholar
Balter, M 2010. In a cold snap, farmers turned to milk. Science 329, 1465.Google Scholar
Bayer, S, Kunert, A, Ballschmiter, M, Greiner-Stoeffele, T 2010. Indication for a new lipolytic enzyme family: isolation and characterization of two esterases from a metagenomic library. Journal of Molecular Microbiology and Biotechnology 18, 181187.Google Scholar
Beloqui, A, Pita, M, Polaina, J, Martinez-Arias, A, Golyshina, OV, Zumarraga, M, Yakimov, MM, Garcia-Arellano, H, Alcalde, M, Fernandez, VM, Elborough, K, Andreu, JM, Ballesteros, A, Plou, FJ, Timmis, KN, Ferrer, M, Golyshin, PN 2006. Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. Journal of Biological Chemistry 281, 2293322942.CrossRefGoogle ScholarPubMed
Benner, SA, Caraco, MD, Thomson, JM, Gaucher, EA 2002. Planetary biology–paleontological, geological, and molecular histories of life. Science 296, 864868.Google Scholar
Bera-Maillet, C, Devillard, E, Cezette, M, Jouany, J-P, Forano, E 2005. Xylanases and carboxymethylcellulases of the rumen protozoa Polyplastron multivesiculatum, Eudiplodinium maggii and Entodinium sp. FEMS Microbiology Letters 244, 149156.Google Scholar
Berg Miller, ME, Antonopoulos, DA, Rincon, MT, Band, M, Bari, A, Akraiko, T, Hernandez, A, Thimmapuram, J, Henrissat, B, Coutinho, PM, Borovok, I, Jindou, S, Lamed, R, Flint, HJ, Bayer, EA, White, BA 2009. Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1. PLoS One 4, e6650.Google Scholar
Brulc, JM, Antonopoulos, DA, Miller, ME, Wilson, MK, Yannarell, AC, Dinsdale, EA, Edwards, RE, Frank, ED, Emerson, JB, Wacklin, P, Coutinho, PM, Henrissat, B, Nelson, KE, White, BA 2009. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proceedings of the National Academy of Sciences of the United States of America 106, 19481953.CrossRefGoogle ScholarPubMed
Brumm, P, Mead, D, Boyum, J, Drinkwater, C, Gowda, K, Stevenson, D, Weimer, P 2011. Functional annotation of Fibrobacter succinogenes S85 carbohydrate active enzymes. Applied Biochemistry and Biotechnology 163, 649657.CrossRefGoogle ScholarPubMed
Callaway, TR, Dowd, SE, Edrington, TS, Anderson, RC, Krueger, N, Bauer, N, Kononoff, PJ, Nisbet, DJ 2010. Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing. Journal of Animal Science 88, 39773983.Google Scholar
Chaban, B, Hill, JE 2012. A ‘universal’ type II chaperonin PCR detection system for the investigation of Archaea in complex microbial communities. ISME Journal 6, 430439.Google Scholar
Chang, L, Ding, M, Bao, L, Chen, Y, Zhou, J, Lu, H 2011. Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms. Applied Microbiology and Biotechnology 90, 19331942.Google Scholar
Chaucheyras-Durand, F, Walker, ND, Bach, A 2008. Effects of active dry yeasts on the rumen microbial ecosystem: past, present and future. Animal Feed Science and Technology 145, 526.Google Scholar
Claus, SP, Ellero, SL, Berger, B, Krause, L, Bruttin, A, Molina, Jrm, Paris, A, Want, EJ, de Waziers, I, Cloarec, O, Richards, SE, Wang, Y, Dumas, M-E, Ross, A, Rezzi, S, Kochhar, S, Van Bladeren, P, Lindon, JC, Holmes, E, Nicholson, JK 2011. Colonization-induced host–gut microbial metabolic interaction. mBio 2, doi:10.1128/mBio.00271-10.Google Scholar
Clauss, M, Hume, ID, Hummel, J 2010. Evolutionary adaptations of ruminants and their potential relevance for modern production systems. Animal 4, 979992.Google Scholar
Clauss, M, Müller, K, Fickel, J, Streich, WJ, Hatt, JM, Südekum, KH 2011. Macroecology of the host determines microecology of endobionts: protozoal faunas vary with wild ruminant feeding type and body mass. Journal of Zoology 283, 169185.Google Scholar
Clokie, MRJ, Millard, AD, Letarov, AV, Heaphy, S 2011. Phages in nature. Bacteriophage 1, 3145.Google Scholar
Crosby, LD, Criddle, CS 2003. Understanding bias in microbial community analysis techniques due to rrn operon copy number heterogeneity. BioTechniques 34, 790794, 796, 798 passim.CrossRefGoogle ScholarPubMed
Crosby, WL, Collier, B, Thomas, DY, Teather, RM, Erfle, JD 1984. Cloning and expression in Escherichia coli of cellulase genes from Bacteroides succinogenes. Proceedings of the 5th Canadian Bioenergy Research and Development Seminar, Barking, England, pp. 573–576.Google Scholar
Deng, Y, Fong, SS 2011. Laboratory evolution and multi-platform genome re-sequencing of the cellulolytic actinobacterium Thermobifida fusca. Journal of Biological Chemistry 286, 3995839966.Google Scholar
Denman, SE, Tomkins, NW, McSweeney, CS 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiology Ecology 62, 313322.Google Scholar
Dethlefsen, L, McFall-Ngai, M, Relman, DA 2007. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449, 811818.CrossRefGoogle ScholarPubMed
Devillard, E, Goodheart, DB, Karnati, SKR, Bayer, EA, Lamed, R, Miron, J, Nelson, KE, Morrison, M 2004. Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, cel48a and cel9b, both of which possess a novel modular architecture. Journal of Bacteriology 186, 136145.Google Scholar
Diamond, J 1997. Guns, germs, and steel: the fates of human societies. Norton, New York.Google Scholar
Diamond, J 2002. Evolution, consequences and future of plant and animal domestication. Nature 418, 700707.Google Scholar
Dinsdale, EA, Edwards, RA, Hall, D, Angly, F, Breitbart, M, Brulc, JM, Furlan, M, Desnues, C, Haynes, M, Li, L, McDaniel, L, Moran, MA, Nelson, KE, Nilsson, C, Olson, R, Paul, J, Brito, BR, Ruan, Y, Swan, BK, Stevens, R, Valentine, DL, Thurber, RV, Wegley, L, White, BA, Rohwer, F 2008. Functional metagenomic profiling of nine biomes. Nature 452, 629632.Google Scholar
Doi, RH, Kosugi, A 2004. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nature Reviews Microbiology 2, 541551.CrossRefGoogle ScholarPubMed
Duan, CJ, Xian, L, Zhao, GC, Feng, Y, Pang, H, Bai, XL, Tang, JL, Ma, QS, Feng, JX 2009. Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. Journal of Applied Microbiology 107, 245256.Google Scholar
Dunne, JC, Li, D, Kelly, WJ, Leahy, SC, Bond, JJ, Jordan, TW, Attwood, GT 2007. Proteins involved in plant polysaccharide depolymerisation are differentially expressed in the Clostridium proteoclasticum secretome. In Proceedings of the Human Proteome Organisation 6th Annual World Congress ‘Proteomics: From Technology Development of Biomarker Applications’, 6–10 October 2007, Molecular and Cellular Proteomics, Seoul, Korea.Google Scholar
Durso, LM, Harhay, GP, Smith, TP, Bono, JL, Desantis, TZ, Harhay, DM, Andersen, GL, Keen, JE, Laegreid, WW, Clawson, ML 2010. Animal-to-animal variation in fecal microbial diversity among beef cattle. Applied and Environmental Microbiology 76, 48584862.Google Scholar
Eckburg, PB, Bik, EM, Bernstein, CN, Purdom, E, Dethlefsen, L, Sargent, M, Gill, SR, Nelson, KE, Relman, DA 2005. Diversity of the human intestinal microbial flora. Science 308, 16351638.CrossRefGoogle ScholarPubMed
Edwards, JE, McEwan, NR, Travis, AJ, Wallace, RJ 2004. 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie van Leeuwenhoek 86, 263281.CrossRefGoogle Scholar
Egert, M, de Graaf, AA, Smidt, H, de Vos, WM, Venema, K 2006. Beyond diversity: functional microbiomics of the human colon. Trends in Microbiology 14, 8691.Google Scholar
Erickson, DL, Nsereko, VL, Morgavi, DP, Selinger, LB, Rode, LM, Beauchemin, KA 2002. Evidence of quorum sensing in the rumen ecosystem: detection of N-acyl homoserine lactone autoinducers in ruminal contents. Canadian Journal of Microbiology 48, 374378.Google Scholar
FAO 2006. World agriculture: towards 2030/2050. Interim Report. Food and Agriculture Organization of the United Nations, Global Perspective Studies Unit, Rome.Google Scholar
FAO 2009. United Nations Food and Agriculture Organization. Retrieved June 1, 2011, from http://faostat.fao.orgGoogle Scholar
Ferrer, M, Beloqui, A, Golyshina, OV, Plou, FJ, Neef, A, Chernikova, TN, Fernandez-Arrojo, L, Ghazi, I, Ballesteros, A, Elborough, K, Timmis, KN, Golyshin, PN 2007. Biochemical and structural features of a novel cyclodextrinase from cow rumen metagenome. Biotechnology Journal 2, 207213.Google Scholar
Ferrer, M, Golyshina, OV, Chernikova, TN, Khachane, AN, Reyes-Duarte, D, Santos, VAPMD, Strompl, C, Elborough, K, Jarvis, G, Neef, A, Yakimov, MM, Timmis, KN, Golyshin, PN 2005. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environmental Microbiology 7, 19962010.Google Scholar
Flint, HJ, Bayer, EA, Rincon, MT, Lamed, R, White, BA 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Reviews Microbiology 6, 121131.Google Scholar
Forsberg, CW, Forano, E, Chesson, A 2000. Microbial adherence to plant cell wall and enzymatic hydrolysis. In Ruminant physiology digestion metabolism, growth and reproduction (ed. PB Cronje), pp. 7998. CABI Publishing, Wallingford, UK.Google Scholar
Fricke, WF, Seedorf, H, Henne, A, Kruer, M, Liesegang, H, Hedderich, R, Gottschalk, G, Thauer, RK 2006. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. Journal of Bacteriology 188, 642658.Google Scholar
Gagen, EJ, Denman, SE, Padmanabha, J, Zadbuke, S, Al Jassim, R, Morrison, M, McSweeney, CS 2010. Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach. Applied and Environmental Microbiology 76, 77857795.Google Scholar
Ghorbani, GR, Morgavi, DP, Beauchemin, KA, Leedle, JA 2002. Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. Journal of Animal Science 80, 19771985.Google Scholar
Gill, HS, Shu, Q, Leng, RA 2000. Immunization with Streptococcus bovis protects against lactic acidosis in sheep. Vaccine 18, 25412548.Google Scholar
Gill, SR, Pop, M, Deboy, RT, Eckburg, PB, Turnbaugh, PJ, Samuel, BS, Gordon, JI, Relman, DA, Fraser-Liggett, CM, Nelson, KE 2006. Metagenomic analysis of the human distal gut microbiome. Science 312, 13551359.Google Scholar
Gomez-Alvarez, V, Teal, TK, Schmidt, TM 2009. Systematic artifacts in metagenomes from complex microbial communities. ISME Journal 3, 13141317.Google Scholar
Goodacre, R 2007. Metabolomics of a superorganism. Journal of Nutrition 137, 259S266S.Google Scholar
Grabherr, MG, Haas, BJ, Yassour, M, Levin, JZ, Thompson, DA, Amit, I, Adiconis, X, Fan, L, Raychowdhury, R, Zeng, Q, Chen, Z, Mauceli, E, Hacohen, N, Gnirke, A, Rhind, N, di Palma, F, Birren, BW, Nusbaum, C, Lindblad-Toh, K, Friedman, N, Regev, A 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29, 644652.CrossRefGoogle ScholarPubMed
Griffith, GW, Baker, S, Fliegerova, K, Liggenstoffer, A, van der Giezen, M, Voigt, K, Beakes, G 2010. Anaerobic fungi: Neocallimastigomycota. IMA Fungus: the Global Mycological Journal 1, 181185.Google Scholar
Groleau, D, Forsberg, CW 1981. Cellulolytic activity of the rumen bacterium Bacteroides succinogenes. Canadian Journal of Microbiology 27, 517530.CrossRefGoogle ScholarPubMed
Gruby, D, Delafond, HMO 1843. Recherches sur des animalcules se développant en grand nombre dans l'estomac et dans les intestins, pedant la digestion des animaux herbivores et carnivores. Comptes Rendus de l'Académie des Sciences 17, 13041308.Google Scholar
Guan, LL, Nkrumah, JD, Basarab, JA, Moore, SS 2008. Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle's feed efficiency. FEMS Microbiology Letters 288, 8591.Google Scholar
Handelsman, J, Rondon, MR, Brady, SF, Clardy, J, Goodman, RM 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & Biology 5, R245R249.Google Scholar
Hansen, EE, Lozupone, CA, Rey, FE, Wu, M, Guruge, JL, Narra, A, Goodfellow, J, Zaneveld, JR, McDonald, DT, Goodrich, JA, Heath, AC, Knight, R, Gordon, JI 2011. Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins. Proceedings of the National Academy of Sciences of the United States of America 108, 45994606.CrossRefGoogle ScholarPubMed
Head, IM, Saunders, JR, Pickup, RW 1998. Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial Ecology 35, 121.Google Scholar
Henderson, G, Naylor, GE, Leahy, SC, Janssen, PH 2010. Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants. Applied and Environmental Microbiology 76, 20582066.Google Scholar
Hess, M, Sczyrba, A, Egan, R, Kim, TW, Chokhawala, H, Schroth, G, Luo, S, Clark, DS, Chen, F, Zhang, T, Mackie, RI, Pennacchio, LA, Tringe, SG, Visel, A, Woyke, T, Wang, Z, Rubin, EM 2011. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331, 463467.Google Scholar
Hobson, PN, Stewart, CS 1997. The rumen microbial ecosystem. Chapman & Hall, London.Google Scholar
Hong, SH, Kim, JS, Lee, SY, In, YH, Choi, SS, Rih, J-K, Kim, CH, Jeong, H, Hur, CG, Kim, JJ 2004. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nature Biotechnology 22, 12751281.Google Scholar
Hooper, LV 2004. Bacterial contributions to mammalian gut development. Trends in Microbiology 12, 129134.Google Scholar
Huang, H, Zhang, R, Fu, D, Luo, J, Li, Z, Luo, H, Shi, P, Yang, P, Diao, Q, Yao, B 2010. Diversity, abundance and characterization of ruminal cysteine phytases suggest their important role in phytate degradation. Environmental Microbiology 13, 747757.Google Scholar
Hume, ID, Warner, ACI 1980. Evolution of microbial digestion in mammals. In Digestive physiology and metabolism in ruminants (ed. Y Ruckebusch and P Thivend), pp. 665684. MTP Press, Lancaster, UK.Google Scholar
Hungate, RE 1966. The rumen and its microbes. Academic Press, New York.Google Scholar
Huws, SA, Edwards, JE, Kim, EJ, Scollan, ND 2007. Specificity and sensitivity of eubacterial primers utilized for molecular profiling of bacteria within complex microbial ecosystems. Journal of Microbiological Methods 70, 565569.Google Scholar
Janssen, PH 2010. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Animal Feed Science and Technology 160, 122.Google Scholar
Janssen, PH, Kirs, M 2008. Structure of the archaeal community of the rumen. Applied and Environmental Microbiology 74, 36193625.Google Scholar
Jouany, JP, Morgavi, DP 2007. Use of ‘natural’ products as alternatives to antibiotic feed additives in ruminant production. Animal 1, 14431466.Google Scholar
Jun, HS, Qi, M, Ha, JK, Forsberg, CW 2007. Fibrobacter succinogenes, a dominant fibrolytic ruminal bacterium: transition to the post genomic era. Asian-Australasian Journal of Animal Sciences 20, 802810.Google Scholar
Kanagawa, T 2003. Bias and artifacts in multitemplate polymerase chain reactions (PCR). Journal of Bioscience and Bioengineering 96, 317323.Google Scholar
Kandler, O, König, H 1978. Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Archives of Microbiology 118, 141152.Google Scholar
Kandler, O, König, H 1985. Cell envelopes of archaebacteria. In The bacteria (ed. CR Woese and RS Wolfe), pp. 413457. Academic Press, Inc., New York, NY.Google Scholar
Karlsson, FH, Nookaew, I, Petranovic, D, Nielsen, J 2011. Prospects for systems biology and modeling of the gut microbiome. Trends in Biotechnology 29, 251258.Google Scholar
Kelly, WJ, Leahy, SC, Altermann, E, Yeoman, CJ, Dunne, JC, Kong, Z, Pacheco, DM, Li, D, Noel, SJ, Moon, CD, Cookson, AL, Attwood, GT 2010. The glycobiome of the rumen bacterium Butyrivibrio Proteoclasticus B316T highlights adaptation to a polysaccharide-rich environment. PLoS One 5, e11942.CrossRefGoogle ScholarPubMed
Kenters, N, Henderson, G, Jeyanathan, J, Kittelmann, S, Janssen, PH 2010. Isolation of previously uncultured rumen bacteria by dilution to extinction using a new liquid culture medium. Journal of Microbiological Methods 84, 5260.Google Scholar
Khafipour, E, Li, S, Plaizier, JC, Krause, DO 2009. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology 75, 71157124.Google Scholar
Kim, M, Morrison, M, Yu, Z 2011. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiology Ecology 76, 4963.Google Scholar
Kittelmann, S, Janssen, PH 2011. Characterization of rumen ciliate community composition in domestic sheep, deer, and cattle, feeding on varying diets, by means of PCR-DGGE and clone libraries. FEMS Microbiology Ecology 75, 468481.Google Scholar
Klieve, AV, Bauchop, T 1988. Morphological diversity of ruminal bacteriophages from sheep and cattle. Applied and Environmental Microbiology 54, 16371641.Google Scholar
Koike, S, Handa, Y, Goto, H, Sakai, K, Miyagawa, E, Matsui, H, Ito, S, Kobayashi, Y 2010. Molecular monitoring and isolation of previously uncultured bacterial strains from the sheep rumen. Applied and Environmental Microbiology 76, 18871894.Google Scholar
Konopka, A 2006. Microbial ecology: searching for principles. Microbe 1, 175179.Google Scholar
Konopka, A 2009. What is microbial community ecology? ISME Journal 3, 12231230.Google Scholar
Kudo, H, Cheng, K-J, Costerton, JW 1987. Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers. Canadian Journal of Microbiology 32, 244248.Google Scholar
Larue, R, Yu, Z, Parisi, VA, Egan, AR, Morrison, M 2005. Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing. Environmental Microbiology 7, 530543.Google Scholar
Leahy, SC, Kelly, WJ, Altermann, E, Ronimus, RS, Yeoman, CJ, Pacheco, DM, Li, D, Kong, Z, McTavish, S, Sang, C, Lambie, SC, Janssen, PH, Dey, D, Attwood, GT 2010. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One 5, e8926.Google Scholar
Lederberg, J 2000. Infectious History. Science 288, 287293.CrossRefGoogle ScholarPubMed
Ley, RE, Lozupone, CA, Hamady, M, Knight, R, Gordon, JI 2008a. Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Reviews Microbiology 6, 776788.Google Scholar
Ley, RE, Hamady, M, Lozupone, C, Turnbaugh, PJ, Ramey, RR, Bircher, JS, Schlegel, ML, Tucker, TA, Schrenzel, MD, Knight, R, Gordon, JI 2008b. Evolution of mammals and their gut microbes. Science 320, 16471651.Google Scholar
Li, LL, McCorkle, SR, Monchy, S, Taghavi, S, van der Lelie, D 2009. Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnology for Biofuels 2, 10.Google Scholar
Li, M, Wang, B, Zhang, M, Rantalainen, M, Wang, S, Zhou, H, Zhang, Y, Shen, J, Pang, X, Zhang, M, Wei, H, Chen, Y, Lu, H, Zuo, J, Su, M, Qiu, Y, Jia, W, Xiao, C, Smith, LM, Yang, S, Holmes, E, Tang, H, Zhao, G, Nicholson, JK, Li, L, Zhao, L 2008. Symbiotic gut microbes modulate human metabolic phenotypes. Proceedings of the National Academy of Sciences of the United States of America 105, 21172122.Google Scholar
Liu, K, Wang, J, Bu, D, Zhao, S, McSweeney, C, Yu, P, Li, D 2009a. Isolation and biochemical characterization of two lipases from a metagenomic library of China Holstein cow rumen. Biochemical and Biophysical Research Communications 385, 605611.Google Scholar
Liu, L, Feng, Y, Duan, C-J, Pang, H, Tang, J-L, Feng, J-X 2009b. Isolation of a gene encoding endoglucanase activity from uncultured microorganisms in buffalo rumen. World Journal of Microbiology and Biotechnology 25, 10351042.Google Scholar
Liu, Y, Whitman, WB 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic Archaea. Annals of the New York Academy of Sciences 1125, 171189.Google Scholar
Lopez-Cortes, N, Reyes-Duarte, D, Beloqui, A, Polaina, J, Ghazi, I, Golyshina, OV, Ballesteros, A, Golyshin, PN, Ferrer, M 2007. Catalytic role of conserved HQGE motif in the CE6 carbohydrate esterase family. FEBS Letters 581, 46574662.Google Scholar
Luo, H-W, Zhang, H, Suzuki, T, Hattori, S, Kamagata, Y 2002. Differential expression of methanogenesis genes of Methanothermobacter thermoautotrophicus (formerly Methanobacterium thermoautotrophicum) in pure culture and in cocultures with fatty acid-oxidizing syntrophs. Applied and Environmental Microbiology 68, 11731179.Google Scholar
Luton, PE, Wayne, JM, Sharp, RJ, Riley, PW 2002. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148, 35213530.Google Scholar
Lynd, LR, Weimer, PJ, van Zyl, WH, Pretorius, IS 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 66, 506577.Google Scholar
Mackie, RI, McSweeney, CS, Klieve, AV 2002. Microbial ecology of the ovine rumen. In Sheep nutrition (ed. M Freer and H Dove), pp. 7194. CABI Publishing, Wallingford, UK.Google Scholar
Martin, C, Morgavi, DP, Doreau, M 2010. Methane mitigation in ruminants: from microbe to the farm scale. Animal 4, 351365.Google Scholar
Marx, H, Graf, AB, Tatto, NE, Thallinger, GG, Mattanovich, D, Sauer, M 2011. Genome sequence of the ruminal bacterium Megasphaera elsdenii. Journal of Bacteriology 193, 55785579.Google Scholar
Math, RK, Islam, SMA, Cho, KM, Hong, SJ, Kim, JM, Yun, MG, Cho, JJ, Heo, JY, Lee, YH, Kim, H, Yun, HD 2010. Isolation of a novel gene encoding a 3,5,6-trichloro-2-pyridinol degrading enzyme from a cow rumen metagenomic library. Biodegradation 21, 565573.Google Scholar
McAllister, TA, Bae, HD, Jones, GA, Cheng, K-J 1994. Microbial attachment and feed digestion in the rumen. Journal of Animal Sciences 72, 30043018.Google Scholar
Michelland, RJ, Monteils, V, Zened, A, Combes, S, Cauquil, L, Gidenne, T, Hamelin, J, Fortun-Lamothe, L 2009. Spatial and temporal variations of the bacterial community in the bovine digestive tract. Journal of Applied Microbiology 107, 16421650.Google Scholar
Morgavi, DP, Forano, E, Martin, C, Newbold, CJ 2010. Microbial ecosystem and methanogenesis in ruminants. Animal 4, 10241036.Google Scholar
Morgavi, DP, Martin, C, Jouany, J-P, Ranilla, MJ 2012. Rumen protozoa and methanogenesis: not a simple cause–effect relationship. British Journal of Nutrition 107, 388397.Google Scholar
Morrison, M, Pope, PB, Denman, SE, McSweeney, CS 2009. Plant biomass degradation by gut microbiomes: more of the same or something new? Current Opinion in Biotechnology 20, 358363.Google Scholar
Mosoni, P, Martin, C, Forano, E, Morgavi, DP 2011. Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep. Journal of Animal Science 89, 783791.Google Scholar
Muegge, BD, Kuczynski, J, Knights, D, Clemente, JC, Gonzalez, A, Fontana, L, Henrissat, B, Knight, R, Gordon, JI 2011. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970974.CrossRefGoogle ScholarPubMed
Nagaraja, TG, Newbold, CJ, Van Nevel, CJ, Demeyer, DI 1997. Manipulation of ruminal fermentation. In Rumen microbial ecosystem (ed. PN Hobson and CS Stewart), pp. 523632. Blackie Academic & Professional, London.Google Scholar
Nicholson, JK, Holmes, E, Wilson, ID 2005. Gut microorganisms, mammalian metabolism and personalized health care. Nature Reviews Microbiology 3, 431438.Google Scholar
Olivier, J, Van Aardenne, J, Dentener, F, Pagliari, V, Ganzeveld, L, Peters, J 2005. Recent trends in global greenhouse gas emissions: regional trends 1970–2000 and spatial distribution of key sources in 2000. Environmental Sciences 2, 8199.Google Scholar
Palackal, N, Lyon, C, Zaidi, S, Luginbühl, P, Dupree, P, Goubet, F, Macomber, J, Short, J, Hazlewood, G, Robertson, D, Steer, B 2007. A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut. Applied Microbiology and Biotechnology 74, 113124.Google Scholar
Papadopoulos, D, Schneider, D, Meier-Eiss, J, Arber, W, Lenski, RE, Blot, M 1999. Genomic evolution during a 10,000-generation experiment with bacteria. Proceedings of the National Academy of Sciences 96, 38073812.Google Scholar
Pedros-Alio, C 2006. Marine microbial diversity: can it be determined? Trends in Microbiology 14, 257263.Google Scholar
Perkel, J 2011. Making contact with sequencing's fourth generation. BioTechniques 50, 9395.Google Scholar
Pitta, D, Pinchak, W, Dowd, S, Osterstock, J, Gontcharova, V, Youn, E, Dorton, K, Yoon, I, Min, B, Fulford, J, Wickersham, T, Malinowski, D 2010. Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microbial Ecology 59, 511522.Google Scholar
Popova, M, Martin, C, Eugène, M, Mialon, MM, Doreau, M, Morgavi, DP 2011. Effect of fibre- and starch-rich finishing diets on methanogenic Archaea diversity and activity in the rumen of feedlot bulls. Animal Feed Science and Technology 166–167, 113121.Google Scholar
Pukall, R, Lapidus, A, Nolan, M, Copeland, A, Del Rio, TG, Lucas, S, Chen, F, Tice, H, Cheng, JF, Chertkov, O, Bruce, D, Goodwin, L, Kuske, C, Brettin, T, Detter, JC, Han, C, Pitluck, S, Pati, A, Mavrommatis, K, Ivanova, N, Ovchinnikova, G, Chen, A, Palaniappan, K, Schneider, S, Rohde, M, Chain, P, D'Haeseleer, P, Goker, M, Bristow, J, Eisen, JA, Markowitz, V, Kyrpides, NC, Klenk, HP, Hugenholtz, P 2009. Complete genome sequence of Slackia heliotrinireducens type strain (RHS 1(T)). Standards in Genomic Sciences 1, 234241.Google Scholar
Purushe, J, Fouts, DE, Morrison, M, White, BA, Mackie, RI, Coutinho, PM, Henrissat, B, Nelson, KE 2010. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microbial Ecology 60, 721729.Google Scholar
Qi, M, Wang, P, O'Toole, N, Barboza, PS, Ungerfeld, E, Leigh, MB, Selinger, LB, Butler, G, Tsang, A, McAllister, TA, Forster, RJ 2011. Snapshot of the eukaryotic gene expression in muskoxen rumen – a metatranscriptomic approach. PLoS One 6, e20521.Google Scholar
Qin, J, Li, R, Raes, J, Arumugam, M, Burgdorf, KS, Manichanh, C, Nielsen, T, Pons, N, Levenez, F, Yamada, T, Mende, DR, Li, J, Xu, J, Li, S, Li, D, Cao, J, Wang, B, Liang, H, Zheng, H, Xie, Y, Tap, J, Lepage, P, Bertalan, M, Batto, J-M, Hansen, T, Le Paslier, D, Linneberg, A, Nielsen, HB, Pelletier, E, Renault, P, Sicheritz-Ponten, T, Turner, K, Zhu, H, Yu, C, Li, S, Jian, M, Zhou, Y, Li, Y, Zhang, X, Li, S, Qin, N, Yang, H, Wang, J, Brunak, S, Dore, J, Guarner, F, Kristiansen, K, Pedersen, O, Parkhill, J, Weissenbach, J, Bork, P, Ehrlich, SD, Wang, J 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 5965.Google Scholar
Quince, C, Lanzen, A, Curtis, TP, Davenport, RJ, Hall, N, Head, IM, Read, LF, Sloan, WT 2009. Accurate determination of microbial diversity from 454 pyrosequencing data. Nature Methods 6, 639641.Google Scholar
Raes, J, Bork, P 2008. Molecular eco-systems biology: towards an understanding of community function. Nature Reviews Microbiology 6, 693699.Google Scholar
Reeve, JN, Nolling, J, Morgan, RM, Smith, DR 1997. Methanogenesis: genes, genomes, and who's on first? Journal of Bacteriology 179, 59755986.Google Scholar
Rincon, MT, Dassa, B, Flint, HJ, Travis, AJ, Jindou, S, Borovok, I, Lamed, R, Bayer, EA, Henrissat, B, Coutinho, PM, Antonopoulos, DA, Berg Miller, ME, White, BA 2010. Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD-1. PLoS One 5, e12476.Google Scholar
Rohwer, F, Youle, M 2011. Consider something viral in your research. Nature Reviews Microbiology 9, 308309.Google Scholar
Rosenzweig, RF, Sharp, RR, Treves, DS, Adams, J 1994. Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics 137, 903917.Google Scholar
Rosselló-Mora, R, Amann, R 2001. The species concept for prokaryotes. FEMS Microbiology Reviews 25, 3967.Google Scholar
Russell, JB, Muck, RE, Weimer, PJ 2009. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiology Ecology 67, 183197.Google Scholar
Sadet, S, Martin, C, Meunier, B, Morgavi, DP 2007. PCR-DGGE analysis reveals a distinct diversity in the bacterial population attached to the rumen epithelium. Animal 1, 939944.Google Scholar
Samuel, BS, Hansen, EE, Manchester, JK, Coutinho, PM, Henrissat, B, Fulton, R, Latreille, P, Kim, K, Wilson, RK, Gordon, JI 2007. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proceedings of the National Academy of Sciences of the United States of America 104, 1064310648.Google Scholar
Sanger, F, Nicklen, S, Coulson, AR 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74, 54635467.Google Scholar
Schadt, EE, Turner, S, Kasarskis, A 2010. A window into third-generation sequencing. Human Molecular Genetics 19, R227R240.Google Scholar
Shanks, OC, Kelty, CA, Archibeque, S, Jenkins, M, Newton, RJ, McLellan, SL, Huse, SM, Sogin, ML 2011. Community structures of fecal bacteria in cattle from different animal feeding operations. Applied and Environmental Microbiology 77, 29923001.Google Scholar
Shedova, E, Berezina, O, Lunina, N, Zverlov, V, Schwarz, W, Velikodvorskaya, G 2009. Cloning and characterisation of a large metagenomic DNA fragment containing glycosyl-hydrolase genes. Molecular Genetics, Microbiology and Virology 24, 1216.Google Scholar
Simon, C, Daniel, R 2011. Metagenomic analyses: past and future trends. Applied and Environmental Microbiology 77, 11531161.Google Scholar
Stevens, CE, Hume, ID 1998. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiological Reviews 78, 393427.Google Scholar
Stevenson, DM, Weimer, PJ 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Applied Microbiology and Biotechnology 75, 165174.Google Scholar
Suen, G, Weimer, PJ, Stevenson, DM, Aylward, FO, Boyum, J, Deneke, J, Drinkwater, C, Ivanova, NN, Mikhailova, N, Chertkov, O, Goodwin, LA, Currie, CR, Mead, D, Brumm, PJ 2011. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS One e18814.Google Scholar
Sundset, M, Edwards, J, Cheng, Y, Senosiain, R, Fraile, M, Northwood, K, Præsteng, K, Glad, T, Mathiesen, S, Wright, A-D 2009. Molecular diversity of the rumen microbiome of Norwegian Reindeer on natural summer pasture. Microbial Ecology 57, 335348.Google Scholar
Teather, RM 2001. Community genomics – the key to the rumen? In Advances in beef cattle science (ed. KA Beauchemin and DHJ Crews), pp. 228233. Livestock Sciences Section, Lethbridge Research Centre, Agriculture and Agri-Food Canada (AAFC), Lethbridge, Canada.Google Scholar
The Bovine Genome Sequencing Analysis Consortium, Elsik, CG, Tellam, RL, Worley, KC, Gibbs, RA, Muzny, DM, Weinstock, GM, Adelson, DL, Eichler, EE, Elnitski, L, Guigo, R, Hamernik, DL, Kappes, SM, Lewin, HA, Lynn, DJ, Nicholas, FW, Reymond, A, Rijnkels, M, Skow, LC, Zdobnov, EM, Schook, L, Womack, J, Alioto, T, Antonarakis, SE, Astashyn, A, Chapple, CE, Chen, H-C, Chrast, J, Camara, F, Ermolaeva, O, Henrichsen, CN, Hlavina, W, Kapustin, Y, Kiryutin, B, Kitts, P, Kokocinski, F, Landrum, M, Maglott, D, Pruitt, K, Sapojnikov, V, Searle, SM, Solovyev, V, Souvorov, A, Ucla, C, Wyss, C, Anzola, JM, Gerlach, D, Elhaik, E, Graur, D, Reese, JT, Edgar, RC, McEwan, JC, Payne, GM, Raison, JM, Junier, T, Kriventseva, EV, Eyras, E, Plass, M, Donthu, R, Larkin, DM, Reecy, J, Yang, MQ, Chen, L, Cheng, Z, Chitko-McKown, CG, Liu, GE, Matukumalli, LK, Song, J, Zhu, B, Bradley, DG, Brinkman, FSL, Lau, LPL, Whiteside, MD, Walker, A, Wheeler, TT, Casey, T, German, JB, Lemay, DG, Maqbool, NJ, Molenaar, AJ, Seo, S, Stothard, P, Baldwin, CL, Baxter, R, Brinkmeyer-Langford, CL, Brown, WC, Childers, CP, Connelley, T, Ellis, SA, Fritz, K, Glass, EJ, Herzig, CTA, Iivanainen, A, Lahmers, KK, Bennett, AK, Dickens, CM, Gilbert, JGR, Hagen, DE, Salih, H, Aerts, J, Caetano, AR, Dalrymple, B, Garcia, JF, Gill, CA, Hiendleder, SG, Memili, E, Spurlock, D, Williams, JL, Alexander, L, Brownstein, MJ, Guan, L, Holt, RA, Jones, SJM, Marra, MA, Moore, R, Moore, SS, Roberts, A, Taniguchi, M, Waterman, RC, Chacko, J, Chandrabose, MM, Cree, A, Dao, MD, Dinh, HH, Gabisi, RA, Hines, S, Hume, J, Jhangiani, SN, Joshi, V, Kovar, CL, Lewis, LR, Liu, Y-s, Lopez, J, Morgan, MB, Nguyen, NB, Okwuonu, GO, Ruiz, SJ, Santibanez, J, Wright, RA, Buhay, C, Ding, Y, Dugan-Rocha, S, Herdandez, J, Holder, M, Sabo, A, Egan, A, Goodell, J, Wilczek-Boney, K, Fowler, GR, Hitchens, ME, Lozado, RJ, Moen, C, Steffen, D, Warren, JT, Zhang, J, Chiu, R, Schein, JE, Durbin, KJ, Havlak, P, Jiang, H, Liu, Y, Qin, X, Ren, Y, Shen, Y, Song, H, Bell, SN, Davis, C, Johnson, AJ, Lee, S, Nazareth, LV, Patel, BM, Pu, L-L, Vattathil, S, JrWilliams, RL, Curry, S, Hamilton, C, Sodergren, E, Wheeler, DA, Barris, W, Bennett, GL, Eggen, A, Green, RD, Harhay, GP, Hobbs, M, Jann, O, Keele, JW, Kent, MP, Lien, S, McKay, SD, McWilliam, S, Ratnakumar, A, Schnabel, RD, Smith, T, Snelling, WM, Sonstegard, TS, Stone, RT, Sugimoto, Y, Takasuga, A, Taylor, JF, Van Tassell, CP, MacNeil, MD, Abatepaulo, ARR, Abbey, CA, Ahola, V, Almeida, IG, Amadio, AF, Anatriello, E, Bahadue, SM, Biase, FH, Boldt, CR, Carroll, JA, Carvalho, WA, Cervelatti, EP, Chacko, E, Chapin, JE, Cheng, Y, Choi, J, Colley, AJ, de Campos, TA, De Donato, M, Santos, IKFdM, de Oliveira, CJF, Deobald, H, Devinoy, E, Donohue, KE, Dovc, P, Eberlein, A, Fitzsimmons, CJ, Franzin, AM, Garcia, GR, Genini, S, Gladney, CJ, Grant, JR, Greaser, ML, Green, JA, Hadsell, DL, Hakimov, HA, Halgren, R, Harrow, JL, Hart, EA, Hastings, N, Hernandez, M, Hu, Z-L, Ingham, A, Iso-Touru, T, Jamis, C, Jensen, K, Kapetis, D, Kerr, T, Khalil, SS, Khatib, H, Kolbehdari, D, Kumar, CG, Kumar, D, Leach, R, Lee, JCM, Li, C, Logan, KM, Malinverni, R, Marques, E, Martin, WF, Martins, NF, Maruyama, SR, Mazza, R, McLean, KL, Medrano, JF, Moreno, BT, More, DD, Muntean, CT, Nandakumar, HP, Nogueira, MFG, Olsaker, I, Pant, SD, Panzitta, F, Pastor, RCP, Poli, MA, Poslusny, N, Rachagani, S, Ranganathan, S, Razpet, A, Riggs, PK, Rincon, G, Rodriguez-Osorio, N, Rodriguez-Zas, SL, Romero, NE, Rosenwald, A, Sando, L, Schmutz, SM, Shen, L, Sherman, L, Southey, BR, Lutzow, YS, Sweedler, JV, Tammen, I, Telugu, BPVL, Urbanski, JM, Utsunomiya, YT, Verschoor, CP, Waardenberg, AJ, Wang, Z, Ward, R, Weikard, R, JrWelsh, TH, White, SN, Wilming, LG, Wunderlich, KR, Yang, J, Zhao, F-Q 2009. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324, 522528.Google Scholar
The Human Microbiome Jumpstart Reference Strains C 2010. A catalog of reference genomes from the human microbiome. Science 328, 994999.Google Scholar
The International Sheep Genomics Consortium, Archibald, AL, Cockett, NE, Dalrymple, BP, Faraut, T, Kijas, JW, Maddox, JF, McEwan, JC, Hutton Oddy, V, Raadsma, HW, Wade, C, Wang, J, Wang, W, Xun, X 2010. The sheep genome reference sequence: a work in progress. Animal Genetics 41, 449453.Google Scholar
Tringe, SG, Hugenholtz, P 2008. A renaissance for the pioneering 16S rRNA gene. Current Opinion in Microbiology 11, 442446.Google Scholar
Turnbaugh, PJ, Ley, RE, Hamady, M, Fraser-Liggett, CM, Knight, R, Gordon, JI 2007. The human microbiome project. Nature 449, 804810.Google Scholar
von Mering, C, Hugenholtz, P, Raes, J, Tringe, SG, Doerks, T, Jensen, LJ, Ward, N, Bork, P 2007. Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315, 11261130.Google Scholar
Wallace, RJ 2008. Gut microbiology – broad genetic diversity, yet specific metabolic niches. Animal 2, 661668.Google Scholar
Wang, FC, Li, F, Chen, GJ, Liu, WF 2009. Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiological Research 164, 650657.Google Scholar
Warnecke, F, Luginbuhl, P, Ivanova, N, Ghassemian, M, Richardson, TH, Stege, JT, Cayouette, M, McHardy, AC, Djordjevic, G, Aboushadi, N, Sorek, R, Tringe, SG, Podar, M, Martin, HG, Kunin, V, Dalevi, D, Madejska, J, Kirton, E, Platt, D, Szeto, E, Salamov, A, Barry, K, Mikhailova, N, Kyrpides, NC, Matson, EG, Ottesen, EA, Zhang, XN, Hernandez, M, Murillo, C, Acosta, LG, Rigoutsos, I, Tamayo, G, Green, BD, Chang, C, Rubin, EM, Mathur, EJ, Robertson, DE, Hugenholtz, P, Leadbetter, JR 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450, U560U517.Google Scholar
Weber, M, Teeling, H, Huang, S, Waldmann, J, Kassabgy, M, Fuchs, BM, Klindworth, A, Klockow, C, Wichels, A, Gerdts, G, Amann, R, Glockner, FO 2011. Practical application of self-organizing maps to interrelate biodiversity and functional data in NGS-based metagenomics. ISME Journal 5, 918928.Google Scholar
Weimer, PJ 1998. Manipulating ruminal fermentation: a microbial ecological perspective. Journal of Animal Science 76, 31143122.Google Scholar
Weimer, PJ, Odt, CL 1995. Cellulose degradation by ruminal microbes: physiological and hydrolytic diversity among ruminal cellulolytic bacteria. In Enzymatic degradation of insoluble carbohydrates (ed. J Saddler and M Penner), pp. 291304. American Chemical Society, Washington, DC.Google Scholar
Weimer, PJ, Russell, JB, Muck, RE 2009. Lessons from the cow: what the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass. Bioresource Technology 100, 53235331.Google Scholar
Weiss, WP, Wyatt, DJ, McKelvey, TR 2008. Effect of feeding Propionibacteria on milk production by early lactation dairy cows. Journal of Dairy Science 91, 646652.Google Scholar
Welkie, DG, Stevenson, DM, Weimer, PJ 2010. ARISA analysis of ruminal bacterial community dynamics in lactating dairy cows during the feeding cycle. Anaerobe 16, 94100.Google Scholar
Whitford, MF, Forster, RJ, Beard, CE, Gong, J, Teather, RM 1998. Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4, 153163.Google Scholar
Williams, AG, Coleman, GS 1992. The Rumen Protozoa. Springer-Verlag New York Inc., New York.Google Scholar
Wilson, DB 2011. Microbial diversity of cellulose hydrolysis. Current Opinion in Microbiology 14, 259263.Google Scholar
Wolin, M, Miller, T, Stewart, C 1997. Microbe–microbe interactions. In The rumen microbial ecosystem (ed. P Hobson and C Stewart), pp. 467491. Chapman & Hall, London.Google Scholar
Wong, D, Chan, VJ, McCormack, AA, Batt, SB 2010a. Cloning and characterization of an exo-xylogucanase from rumenal microbial metagenome. Protein and Peptide Letters 17, 803808.Google Scholar
Wong, D, Chan, VJ, McCormack, AA, Batt, SB 2010b. A novel xyloglucan-specific endo-β-1,4-glucanase: biochemical properties and inhibition studies. Applied Microbiology and Biotechnology 86, 14631471.Google Scholar
Wong, DWS, Chan, VJ, Batt, SB 2008. Cloning and characterization of a novel exo-α-1,5-L-arabinanase gene and the enzyme. Applied Microbiology and Biotechnology 79, 941949.Google Scholar
Wong, DWS, Chan, VJ, McCormack, AA 2009. Functional cloning and expression of a novel endo-α-1,5-L-arabinanase from a metagenomic library. Protein and Peptide Letters 16, 14351441.Google Scholar
World Bank 2008. Rising Food and Fuel Prices: Addressing the Risks to Future Generations. Retrieved September 1, 2009, from http://siteresources.worldbank.org/DEVCOMMEXT/Resources/Food-Fuel.pdfGoogle Scholar
Xu, J, Gordon, JI 2003. Inaugural article: honor thy symbionts. Proceedings of the National Academy of Sciences of the United States of America 100, 1045210459.Google Scholar
Yanez-Ruiz, DR, Hart, KJ, Martin-Garcia, AI, Ramos, S, Newbold, CJ 2008. Diet composition at weaning affects the rumen microbial population and methane emissions by lambs. Australian Journal of Experimental Agriculture 48, 186188.Google Scholar
Yáñez-Ruiz, DR, Macías, B, Pinloche, E, Newbold, CJ 2010. The persistence of bacterial and methanogenic archaeal communities residing in the rumen of young lambs. FEMS Microbiology Ecology 72, 272278.Google Scholar
Zhao, S, Wang, J, Bu, D, Liu, K, Zhu, Y, Dong, Z, Yu, Z 2010. Novel glycoside hydrolases identified by screening a Chinese Holstein dairy cow rumen-derived metagenome library. Applied and Environmental Microbiology 76, 67016705.Google Scholar
Zhou, M, Hernandez-Sanabria, E, Guan, LL 2010. Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis. Applied and Environmental Microbiology 76, 37763786.Google Scholar
Zhu, YX, Wang, JQ, Ma, RL, Huang, L, Dong, ZY 2007. Construction and analysis of rumen bacterial artificial chromosome library from a dairy cow rumen microflora. Wei Sheng Wu Xue Bao (Acta Microbiologica Sinica) 47, 213216.Google Scholar
Supplementary material: File

Morgavi et al. supplementary material

Table

Download Morgavi et al. supplementary material(File)
File 84 KB