Skip to main content
×
×
Home

Effects of vineyard coverage and extent on benthic macroinvertebrates in streams of Northern California

  • Justin E. Lawrence (a1), Matthew J. Deitch (a1) and Vincent H. Resh (a1)
Abstract

Vineyards are a dominant feature of many landscapes in Mediterranean-climate regions. We examined the effects of streamflow declines, associated with vineyard water-withdrawals for frost protection, on benthic-macroinvertebrate communities at three sites along three small streams in the Mediterranean-climate region of Northern California. One site was heavily affected by water withdrawals for frost protection, the other two were not. In addition, we examined relationships between vineyard coverage and benthic-macroinvertebrate community response using data from 59 sampling events at 39 sites along 35 small streams in Napa County, California. We tested three a priori hypotheses in terms of the response of biological traits of benthic macroinvertebrates to high vineyard coverage: (1) proportion of individuals with semi-voltine (i.e., one generation every 2 years) life cycles would be lower compared to those with uni- and multi-voltine cycles, (2) proportion of individuals able to undergo diapause would be higher, and (3) proportion of individuals with the ability to burrow into the substrate would be higher. In the three-site study, we found that vineyard water-withdrawals for frost protection coincided with consistently lower values in both the benthic-macroinvertebrate index of biotic integrity (B-IBI) developed for Northern California streams and the ratio of Ephemeroptera–Plecoptera–Trichoptera to Odonata–Coleoptera–Hemiptera individuals (EPT/OCH), a metric developed for European Mediterranean streams. In the broader-scale study, we observed that vineyard-coverage levels above about 20% coincided with lower values of the B-IBI. The semi-voltine life-cycle trait was lower above this level, whereas the diapause and burrowing traits were not affected.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of vineyard coverage and extent on benthic macroinvertebrates in streams of Northern California
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of vineyard coverage and extent on benthic macroinvertebrates in streams of Northern California
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of vineyard coverage and extent on benthic macroinvertebrates in streams of Northern California
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: jlawrence@berkeley.edu
References
Hide All
[1]Altieri, M.A. and Nicholls, C.I., 2002. The simplification of traditional vineyard based agroforests in northwestern Portugal: some ecological implications. Agrof. Syst., 56, 185191.
[2]Bêche, L.A., McElravy, E.P. and Resh, V.H., 2006. Long-term seasonal variation in the biological traits of benthic macroinvertebrates in two Mediterranean-climate streams. Freshw. Biol., 51, 5675.
[3]Bêche, L.A. and Resh, V.H., 2007a. Biological traits of benthic macroinvertebrates in California Mediterranean-climate streams: long-term annual variability and trait diversity patterns. Fundam. Appl. Limnol., 161, 123.
[4]Bêche, L.A. and Resh, V.H., 2007b. Short-term climatic trends affect the temporal variability of macroinvertebrates in California ‘Mediterranean’ streams. Freshw. Biol., 52, 23172339.
[5]Bonada, N., Dolédec, S. and Statzner, B., 2007a. Taxonomic and biological trait differences of stream macroinvertebrate communities between Mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biol., 13, 16581671.
[6]Bonada, N., Rieradevall, M. and Prat, N., 2007b. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia, 589, 91106.
[7]Bonada, N., Rieradevall, M., Prat, N. and Resh, V.H., 2006. Benthic macroinvertebrate assemblages and macrohabitat connectivity in Mediterranean-climate streams of northern California. J. N. Am. Benthol. Soc., 25, 3243.
[8]Carter, J.L. and Resh, V.H., 2001. After site selection and before data analysis: sampling, sorting, and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by USA state agencies. J. N. Am. Benthol. Soc., 20, 658682.
[9]Chevenet, F., Dolédec, S. and Chessel, D., 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol., 31, 295309.
[10]Clausnitzer, V., Kalkman, V.J., Ram, M., Collen, B., Baillie, J.E.M., Bedjanic, M., Darwall, W.R.T., Dijkstra, K.B., Dow, R., Hawking, J., Karube, H., Malikova, E., Paulson, D., Schütte, K., Suhling, F., Villanueva, R.J., von Ellenrieder, N. and Wilson, K., 2009. Odonata enter the biodiversity crisis debate: the first global assessment of an insect group. Biol. Conserv., 142, 18641869.
[11]Cordellier, M. and Pfenninger, M., 2008. Climate-driven range dynamics of the freshwater limpet, Ancylus fluviatilis (Pulmonata, Basommatophora). J. Biogeogr., 35, 15801592.
[12]Cover, M.R., May, C.L., Dietrich, W.E. and Resh, V.H., 2008. Quantitative linkages among sediment supply, streambed fine sediment, and benthic macroinvertebrates in northern California streams. J. N. Am. Benthol. Soc., 27, 135149.
[13]Deitch, M.J., Kondolf, G.M. and Merenlender, A.M., 2009. Hydrologic impacts of small-scale instream diversions for frost and heat protection in the California wine country. River Res. Appl., 25, 118134.
[14]Donaldson, D.R., Snyder, R.L., Elmore, C. and Gallagher, S., 1993. Weed control influences vineyard minimum temperatures. Am. J. Enol. Vitic., 44, 431434.
[15]Gasith, A. and Resh, V.H., 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Ann. Rev. Ecol. Syst., 30, 5181.
[16]Hering, D., Schmidth-Kloiber, A., Murphy, J., Lücke, S., Zamora-Muñoz, C., López-Rodríguez, M.J., Huber, T. and Graf, W., 2009. Potential impact of climate change on aquatic insects: a sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquat. Sci. Res. Bound., 71, 314.
[17]Johnson, D.E. and Howell, G.S., 1981. Factors influencing critical temperatures for spring freeze damage to developing primary shoots on Concord grapevines. Am. J. Enol. Vitic., 32, 144149.
[18]Kasimatis, A.N. and Kissler, J.J., 1974. Responses of grapevines to shoot break-out following injury by spring frost. Am. J. Enol. Vitic., 25, 1720.
[19]Lawrence, J.E., Lunde, K.B., Mazor, R.D., Bêche, L.A., McElravy, E.P. and Resh, V.H., 2010. Long-term macroinvertebrate responses to climate change: implications for biological assessment in Mediterranean-climate streams. J. N. Am. Benthol. Soc., 29, 14241440.
[20]Mendez, P.K. and Resh, V.H., 2008. Life history of Neophylax richeri (Trichoptera: Uenoidae) in two Northern California streams. Ann. Entomol. Soc. Am., 101, 573584.
[21]Morais, P., 2008. Review on the major ecosystem impacts caused by damming and watershed development in an Iberian basin (SW-Europe): focus on the Guadiana estuary. Ann. Limnol. – Int. J. Lim., 44, 105117.
[22]Mouthon, J. and Daufresne, M., 2006. Effects of the 2003 heatwave and climatic warming on mollusc communities of the Saône: a large lowland river and of its two main tributaries (France). Glob. Chang. Biol., 12, 441449.
[23]Nicholls, C.I., Parrella, M. and Altieri, M.A., 2001. The effects of a vegetational corridor on the abundance and dispersal of insect biodiversity within a northern California organic vineyard. Landsc. Ecol., 16, 133146.
[24]Ode, P.R., 2007. Standard operating procedures for collecting macroinvertebrate samples and associated physical and chemical data for ambient bioassessments in California. California State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) Bioassessment SOP 001.
[25]Orang, M.N., Matyac, J.S. and Snyder, R.L., 2008. Survey of irrigation methods in California in 2001. J. Irrigat. Drain. Eng., 134, 96100.
[26]Poff, N.L., Olden, J.D., Vieira, N.K.M., Finn, D.S., Simmons, M.P. and Kondratieff, B.C., 2006. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J. N. Am. Benthol. Soc., 25, 730755.
[27]Rehn, A.C., Ode, P.R. and May, J.T., 2005. Development of a benthic index of biotic integrity (B- IBI) for wadeable streams in northern coastal California and its application to regional 305(b) reporting. California State Water Quality Control Board, Sacramento, California.
[28]Smith, R.J., Klonsky, K.M., Livingston, P.L. and DeMoura, R.L., 2004. Sample costs to establish a vineyard and produce wine grapes: North Coast region, Sonoma County. University of California Cooperative Extension, Davis, California.
[29]Spooner, D.E. and Vaughn, C.C., 2008. A trait-based approach to species’ roles in stream ecosystems: climate change, community structure, and material cycling. Oecologia, 158, 307317.
[30]Tornés, E., Cambra, J., Gomà, J., Leira, R., and Sabatar, S., 2007. Indicator taxa of benthic diatom communities: a case study in Mediterranean streams. Ann. Limnol. – Int. J. Lim., 43, 111.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annales de Limnologie - International Journal of Limnology
  • ISSN: 0003-4088
  • EISSN: 2100-000X
  • URL: /core/journals/annales-de-limnologie-international-journal-of-limnology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed