Skip to main content
×
×
Home

Assimilating summer sea-ice concentration into a coupled ice–ocean model using a LSEIK filter

  • Qinghua Yang (a1) (a2), Svetlana N. Losa (a2), Martin Losch (a2), Jiping Liu (a3), Zhanhai Zhang (a4), Lars Nerger (a2) and Hu Yang (a2)...
Abstract

The decrease in summer sea-ice extent in the Arctic Ocean opens shipping routes and creates potential for many marine operations. For these activities accurate predictions of sea-ice conditions are required to maintain marine safety. In an attempt at Arctic sea-ice prediction, the summer of 2010 is selected to implement an Arctic sea-ice data assimilation (DA) study. The DA system is based on a regional Arctic configuration of the Massachusetts Institute of Technology general circulation model (MITgcm) and a local singular evolutive interpolated Kalman (LSEIK) filter to assimilate Special Sensor Microwave Imager/Sounder (SSMIS) sea-ice concentration operational products from the US National Snow and Ice Data Center (NSIDC). Based on comparisons with both the assimilated NSIDC SSMIS concentration and concentration data from the Ocean and Sea Ice Satellite Application Facility, the forecasted sea-ice edge and concentration improve upon simulations without data assimilation. By the nature of the assimilation algorithm with multivariate covariance between ice concentration and thickness, sea-ice thickness fields are also updated, and the evaluation with in situ observation shows some improvement compared to the forecast without data assimilation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Assimilating summer sea-ice concentration into a coupled ice–ocean model using a LSEIK filter
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Assimilating summer sea-ice concentration into a coupled ice–ocean model using a LSEIK filter
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Assimilating summer sea-ice concentration into a coupled ice–ocean model using a LSEIK filter
      Available formats
      ×
Copyright
References
Hide All
Cavalieri, DJ and Parkinson, CL (2012) Arctic sea ice variability and trends, 1979–2010. Cryosphere, 6(4), 881889 (doi: 10.5194/tc-6-881-2012)
Cavalieri, DJ Parkinson, CL DiGirolamo, N and Ivanoff, A (2012) Intersensor calibration between F13 SSMI and F17 SSMIS for global sea ice data records. IEEE Geosci. Remote Sens. Lett., 9(2), 233236 (doi: 10.1109/LGRS.2011.2166754)
Comiso, JC Cavalieri, DJ Parkinson, CL and Gloersen, P (1997) Passive microwave algorithms for sea ice concentration: a comparison of two techniques. Remote Sens. Environ., 60(3), 357384 (doi: 10.1016/S0034-4257(96)00220-9)
Eastwood, S, Larsen, KR Lavergne, T, Neilsen, E and Tonboe, R (2011) OSI SAF global sea ice concentration reprocessing: product user manual, version 1.3.. (Product OSI-409, SAF/OSI/CDOP/met.no/ TEC.MA/138) European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application Facility, Darmstadt/Boulder, CO
Eicken, H (2013) Ocean science: Arctic sea ice needs better forecasts. Nature, 497(7450), 431433 (doi: 10.1038/497431a)
Gaspari, G and Cohn, SE (1999) Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc., 125(554), 72757 (doi: 10.1002/qj.49712555417)
Hunt, BR Kostelich, EJ and Szunyogh, I (2007) Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Physica D, 230(1–2), (112–126) (doi: 10.1016/j.physd.2006.11.008)
Janjicé, T, Nerger, L, Albertella, A, Schröter, J and Skachko, S (2011) On domain localization in ensemble-based Kalman filter algorithms. Mon. Weather Rev., 139(7), 20462060 (doi: 10.1175/ 2011MWR3552.1)
Kwok, R and Sulsky, D (2010) Arctic Ocean sea ice thickness and kinematics: satellite retrievals and modeling. Oceanography, 23(4), 134143
Kwok, R, Cunningham, GF Wensnahan, M, Rigor, I, Zwally, HJ and Yi, D (2009) Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res., 114(C7), (C07005) (doi: 10.1029/2009JC005312)
Lindsay, RW and Zhang, J (2006) Assimilation of ice concentration in an ice–ocean model. J. Atmos. Ocean. Technol., 23(5), 742749 (doi: 10.1175/JTECH1871.1)
Lisæter, K, Rosanova, J and Evensen, G (2003) Assimilation of ice concentration in a coupled ice–ocean model, using the Ensemble Kalman filter. Ocean Dyn., 53(4), 368388 (doi: 10.1007/s10236-003-0049-4)
Liu, J, Song, M, Horton, RA and Hu, Y (2013) Reducing spread in climate model projections of a September ice-free Arctic. Proc. Natl Acad. Sci. USA (PNAS), 110(31), 1257112576 (doi: 10.1073/pnas.1219716110)
Losa, SN Danilov, S, Schröter, J, Nerger, L, Massmann, S and Janssen, F (2012) Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: inference about the data. J. Mar. Syst. 105–108, 152162 (doi: 10.1016/j.jmarsys. 2012.07.008)
Losa, SN Danilov, S, Schröter, J, Janjicé, T, Nerger, L and Janssen, F (2014) Assimilating NOAA SST data into BSH operational circulation model for the North and Baltic Seas: Part 2. Sensitivity of the forecast’s skill to the prior model error statistics. J. Mar. Syst. 129, 259270 (doi: 10.1016/j.jmarsys.2013.06.011)
Losch, M, Menemenlis, D, Campin, J-M, Heimbach Pand, Hill C(2010) On the formulation of sea-ice models. Part I: effects of different solver implications and parameterizations. Ocean Model., 33(1–2), (129–144) (doi: 10.1016/j.ocemod.2009.12.008)
Markus, T, Stroeve, JC and Miller, J (2009) Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J. Geophys. Res., 114(C12), (C12024) (doi: 10.1029/2009JC005436)
Marshall, J, Adcroft, A, Hill, C, Perelman, L and Heisey, C (1997) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102(C3), (5753–5766) (doi: 10.1029/96JC02775)
Melling, H, Johnston, PH and Riedel, DA (1995) Measurements of the underside topography of sea ice by moored subsea sonar. J. Atmos. Oceanic Technol., 12(3), 589602 (doi: 10.1175/ 1520–0426(1995)012˂0589.MOTUTO˃2.0.CO;2)
Menemenlis, D and 7 others (2008)ECCO2: high resolution global ocean and sea ice data synthesis. Mercator Ocean Sci. Newsl. 31, 13–21
Nerger, L and Hiller, W (2013) Software for ensemble-based data assimilation systems – implementation strategies and scalability. Comput. Geosci., 55, 110118 (doi: 10.1016/j.cageo.2012. 03.026)
Nerger, L, Hiller, W and Schröter, J (2005) A comparison of error subspace Kalman filters. Tellus ∆, 57(5), 715735 (doi: 10.1111/ j.1600-0870.2005.00141.x)
Nerger, L, Danilov, S, Hiller, W and Schröter, J (2006) Using sea-level data to constrain a finite-element primitive-equation ocean model with a local SEIK filter. Ocean Dyn., 56(5–6), (634–649) (doi: 10.1007/s10236-006-0083-0)
Nguyen, AT Menemenlis, D and Kwok, R (2011) Arctic ice–ocean simulation with optimized model parameters: approach and assessment. J. Geophys. Res., 116(C4), (C04025) (doi: 10.1029/ 2010JC006573)
Nguyen, AT Kwok, R and Menemenlis, D (2012) Source and pathway of the Western Arctic Upper Halocline in a data-constrained coupled ocean and sea ice model. J. Phys. Oceanogr., 42(5), 802823 (doi: 10.1175/JPO-D-11-040.1)
Onogi, K and 16 others (2007) The JRA-25 reanalysis. J. Meteorol. Soc. Jpn, 85(3), 369432
Perovich, DK Richter-Menge, JA Elder, B, Claffey, K and Polashenski, C (2009) Observing and understanding Arctic climate change: monitoring the mass balance, motion, and thickness of sea ice.. Cold Regions Research and Engineering Laboratory, Hanover, NH http://imb.crrel.usace.army.mil
Pham, DT (2001) Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Weather Rev., 129(5), 11941207 (doi: 10.1175/1520-0493(2001)129˂1194: SMFSDA˃2.0.CO;2)
Pham, DT Verron, J and Gourdeau, L (1998) Filtres de Kalman singuliers évolutifs pour l’assimilation de données en océan-ographie. C.R. Acad. Sci. [Paris], Sér. IIA. 326, 255260
Richter-Menge, JA Perovich, DK Elder, BC Claffey, K, Rigor, I and Ortmeyer, M (2006) Ice mass balance buoys: a tool for measuring and attributing changes in the thickness of the Arctic sea-ice cover. Ann. Glaciol., 44, 205210 (doi: 10.3189/ 172756406781811727)
Rollenhagen, K, Timmermann, R, Janjicé, T, Schröter, J and Danilov, S (2009) Assimilation of sea ice motion in a finite-element sea ice model. J. Geophys. Res., 114(C5), (C05007) (doi: 10.1029/ 2008JC005067)
Smith, WHF and Sandwell, DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334), 19561962 (doi: 10.1126/science.277.5334.1956)
Stark, JD Ridley, J, Martin Mand HinesA(2008) Sea ice concentration and motion assimilation in a sea ice–ocean model. J. Geophys. Res., 113(C5), (C05S91) (doi: 10.1029/2007JC004224)
Stroeve, JC Serreze, MC Holland, MM Kay, JE Malanik, J and Barrett AP (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110(3–4), (1005–1027) (doi: 10.1007/s10584-011-0101-1)
Tietsche, S, Notz, D, Jungclaus, JH and Marotzke, J (2013) Assimilation of sea-ice concentration in a global climate model: physical and statistical aspects. Ocean Sci., 9(1), 1936 (doi: 10.5194/os-9-19-2013)
Tonboe, R and Nielsen, E (2010) Global sea ice concentration reprocessing validation report.. (Product 0SI-409 Version 1, SAF/ OSI/CDOP/met.no/TEC/RP/150) European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application Facility, Darmstadt/Boulder, CO
Wang, J and 7 others (2009) Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent. Geophys. Res. Lett., 36(5), (L05706) (doi: 10.1029/2008GL036706)
Wang, K, Debernard, J, Sperrevik, AK Isachsen PE and Lavergne, T (2013) A combined optimal interpolation and nudging scheme to assimilate OSISAF sea-ice concentration into ROMS. Ann. Glaciol., 54(62 Pt 1), (8–12) (doi: 10.3189/2013AoG62∆138)
Yang, Q, Liu, J, Zhang, Z, Wu, H, Li, Q and Xing, J (2011) [A preliminary study of the Arctic sea ice numerical forecasting: coupled sea ice–ocean modelling experiments based on MITgcm]. Chinese J. Atmos. Sci., 35(3), 473482 [in Chinese]
Yang, Q, Li, C, Xing, J, Li, Q, Zhang, L and Li, M (2012) [Arctic sea ice forecasting experiments in the summer of 2010]. Chinese J. Polar Res., 24(1), 8794 [in Chinese]
Zhang, J and Hibler, WD III (1997) On an efficient numerical method for modeling sea ice dynamics. J. Geophys. Res., 102(C4), (8691–8702) (doi: 10.1029/96JC03744)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed