Skip to main content Accessibility help
×
×
Home

Hazard assessment of glacial lake outburst floods from Kyagar glacier, Karakoram mountains, China

  • Christoph Haemmig (a1), Matthias Huss (a1) (a2), Hansrudolf Keusen (a1), Josef Hess (a3), Urs Wegmüller (a4), Zhigang Ao (a5) and Wubuli Kulubayi (a6)...

Abstract

Kyagar glacier is located in the Chinese Karakoram mountains. The glacier tongue entirely blocks the riverbed in the upper Shaksgam valley and impounds a glacial lake, which was the source of several violent and disastrous glacial lake outburst floods (GLOFs). A GLOF early warning system was implemented between 2011 and 2013. We present an integrative analysis of the hazard potential of Kyagar lake, taking into account the ice flow dynamics of Kyagar glacier as well as the recent surface mass-balance response to climate change. Comparison of two high-resolution digital elevation models (DEMs) for the ice dam shows surface lowering rates of >5ma– 1 between 2002 and 2011, leading to a significant reduction in the maximum potential lake volume. However, two DEMs covering the entire glacier for the period 2000–10 indicate mass gains in its central part, and flow speed measurements show an acceleration in this region. This pattern of local ice-thickness changes combined with varying ice flow velocities is typical for surge-type glaciers. The velocity of the glacier surface and of the ice dam between 2011 and 2012 are analyzed at high temporal and spatial resolution, based on feature tracking of synthetic aperture radar (SAR) images.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Hazard assessment of glacial lake outburst floods from Kyagar glacier, Karakoram mountains, China
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Hazard assessment of glacial lake outburst floods from Kyagar glacier, Karakoram mountains, China
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Hazard assessment of glacial lake outburst floods from Kyagar glacier, Karakoram mountains, China
      Available formats
      ×

Copyright

References

Hide All
Barrand, NE and Murray, T (2006) Multivariate controls on the incidence of glacier surging in the Karakoram Himalaya. Arct. Antarct. Alp. Res., 38(4), 489498 (doi: 10.1657/1523-0430 (2006)38[489:MCOTIO]2.0.CO;2)
Björnsson, H (2003) Subglacial lakes and jökulhlaups in Iceland. Global Planet. Change, 35(3–4), 255271 (doi: 10.1016/S0921-8181(02)00130-3)
Chen, Y, Xu, C, Chen, Y, Li, W and Liu, J (2010) Response of glacial-lake outburst floods to climate change in the Yarkant River basin on northern slope of Karakoram Mountains, China. Quat. Int., 226(1–2), 7581 (doi: 10.1016/j.quaint.2010.01.003)
Clague, JJ and Mathews, WH (1973) The magnitude of jökulhlaups. J. Glaciol., 12(66), 501504
Copland, L and 7 others (2011) Expanded and recently increased glacier surging in the Karakoram. Arct. Antarct. Alp. Res., 43(4), 503516
Ding, Y and Liu, J (1992) Glacier lake outburst flood disasters in China. Ann. Glaciol., 16, 180184
Fatland, DR and Lingle, CS (2002) InSAR observations of the 1993–95 Bering Glacier (Alaska, U.S.A.) surge and a surge hypothesis. J. Glaciol., 48(162), 439451 (doi: 10.3189/ 172756502781831296)
Feng, Q (1991) Characteristics of glacier outburst flood in the Yarkant river, Karakorum mountains. GeoJournal, 25(2–3), 255263 (doi: 10.1007/BF02682195)
Gardelle, J, Berthier, E and Arnaud, Y (2012) Slight mass gain of Karakoram glaciers in the early 21st century. Nature Geosci., 5(5), 322325 (doi: 10.1038/ngeo1450)
Gardelle, J, Berthier, E, Arnaud, Y and Kääb, A (2013) Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere, 7(4), 12631286 (doi: 10.5194/ tc-7-1263-2013)
Glen, JW (1955) The creep of polycrystalline ice. Proc. R. Soc. London, Ser. A, 228(1175), 519538 (doi: 10.1098/rspa. 1955.0066)
Heid, T and Käab, A (2012) Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. Cryosphere, 6(2), 467478 (doi: 10.5194/tc-6-467-2012)
Hewitt, K (1982) Natural dams and outburst floods of the Karakorum Himalaya. IAHS Publ. 138 (Symposium at Exeter 1982 – Hydrological Aspects of Alpine and High Mountain Areas), 259269
Hewitt, K (2005) The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram Himalaya. Mt. Res. Dev., 25(4), 332340 (doi: 10.1659/0276-4741(2005)025[0332: TKAGEA]2.0.CO;2)
Hewitt, K and Liu, J (2010) Ice-dammed lakes and outburst floods, Karakoram Himalaya: historical perspectives on emerging threats. Phys. Geogr., 31(6), 528551 (doi: 10.2747/0272-3646. 31.6.528)
Huss, M and Farinotti, D (2012) Distributed ice thickness and volume of all glaciers around the globe. J. Geophys. Res., 117(F4), F04010 (doi: 10.1029/2012JF002523)
Huss, M, Bauder, A, Werder, M, Funk, M and Hock, R (2007a) Glacier-dammed lake outburst events of Gornersee, Switzerland. J. Glaciol., 53(181), 189200 (doi: 10.3189/ 172756507782202784)
Huss, M, Sugiyama, S, Bauder, A and Funk, M (2007b) Retreat scenarios of Unteraargletscher, Switzerland, using a combined ice-flow mass-balance model. Arct. Antarct. Alp. Res., 39(3), 422431
Joughin, I, Abdalati, W and Fahnestock, MA (2004) Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature, 432(7017), 608610 (doi: 10.1038/ nature03130)
Liu, J (1992) Jökulhlaups in the Kunmalike River, southern Tien Shan Mountains, China. Ann. Glaciol., 16, 8588
Mason, K (1928) The exploration of Shaksgam Valley and Aghil Ranges, 1926. (Records of the Survey of India, Vol. 22) Survey of India, Dehra Dun
Mayer, C, Fowler, AC, Lambrecht, A and Scharrer, K (2011) A surge of North Gasherbrum Glacier, Karakoram, China. J. Glaciol., 57(205), 904916 (doi: 10.3189/002214311798043834)
Ng, F and Björnsson, H (2003) On the Clague–Mathews relation for jökulhlaups. J. Glaciol., 49(165), 161172 (doi: 10.3189/ 172756503781830836)
Nye, JF (1976) Water flow in glaciers: jökulhlaups, tunnels and veins. J. Glaciol., 17(76), 181207
Quincey, DJ, Braun, M, Glasser, NF, Bishop, MP, Hewitt, K and Luckman, A (2011) Karakoram glacier surge dynamics. Geophys. Res. Lett., 38(18), L18504 (doi: 10.1029/2011GL049004)
Richardson, SD and Reynolds, JM (2000) An overview of glacial hazards in the Himalayas. Quat. Int., 65–66(1), 3147 (doi: 10.1016/S1040-6182(99)00035-X)
Scherler, D and Strecker, MR (2012) Large surface velocity fluctuations of Biafo Glacier, central Karakoram, at high spatial and temporal resolution from optical satellite images. J. Glaciol., 58(209), 569580 (doi: 10.3189/2012JoG11J096)
Schmidt, DA and Bürgmann, R (2003) Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. J. Geophys. Res., 108(B9), 2416 (doi: 10.1029/2002JB002267)
Shi, Y and 6 others (2007) Recent and future climate change in northwest China. Climatic Change, 80(3–4), 379393 (doi: 10.1007/s10584-006-9121-7)
Strozzi, T, Luckman, A, Murray, T, Wegmüller, U and Werner, CL (2002) Glacier motion estimation using satellite-radar offset-tracking procedures. IEEE Trans. Geosci. Remote Sens., 40(11), 2834–2391 (doi: 10.1109/TGRS.2002.805079)
Sturm, M (1986) Formation of a strandline during the 1984 jökulhlaup of Strandline Lake. Arctic, 39(3), 267269
Sugiyama, S, Bauder, A, Huss, M, Riesen, P and Funk, M (2008) Triggering and drainage mechanisms of the 2004 glacier-dammed lake outburst in Gornergletscher, Switzerland. J. Geophys. Res., 113(F4), F04019 (doi: 10.1029/2007JF000920)
Werder, MA, Bauder, A, Funk, M and Keusen, H-R (2010) Hazard assessment investigations in connection with the formation of a lake on the tongue of Unterer Grindelwaldgletscher, Bernese Alps, Switzerland. Natur. Hazards Earth Syst. Sci. (NHESS), 10(2), 227237 (doi: 10.5194/nhess-10-227-2010)
Zhang, X (1992) Investigation of glacier bursts of the Yarkant River in Xinjiang, China. Ann. Glaciol., 16, 135139
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed