Skip to main content
×
×
Home

Helicopter-borne radar imaging of snow cover on and around glaciers in Alaska

  • Alessio Gusmeroli (a1), Gabriel J. Wolken (a2) and Anthony A. Arendt (a3)
Abstract

During spring 2013, we performed 500 MHz, helicopter-borne impulsive ground-penetrating radar surveys of several glaciers and glacier forelands in south-central Alaska, USA. These surveys were designed to obtain spatially distributed measurements of snow accumulation spanning a broad range of continental and maritime climatic zones. Visual assessment of radar images shows that data quality varied with the terrains and was optimal for snow that covered smooth glacier ice and firn, smooth debris-covered areas and moraines, freshwater lake and river ice, tundra, and taiga. Conversely, returns from the base of the snowpack were unrecognizable over rough debris-covered glacier termini, icefalls and some high-altitude accumulation basins. Optimal flying speed was 15-20ms–1 (30–40kt). At these speeds, which are two to three times faster than previously reported for such surveys, we could still identify snow-depth data with confidence, at a point spacing of ~1.5-2.0m. Data quality on glaciers decreased with increased air speed, though useful echoes from the base of the snowpack were still obtained at 40-45 ms–1 (87 kt; data point spacing of 6-8 m). Similar high-speed surveys over non-glacial terrains were unsuccessful, as basal reflections were no longer recognizable.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Helicopter-borne radar imaging of snow cover on and around glaciers in Alaska
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Helicopter-borne radar imaging of snow cover on and around glaciers in Alaska
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Helicopter-borne radar imaging of snow cover on and around glaciers in Alaska
      Available formats
      ×
Copyright
Copyright © The Author(s) 2014 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Hide All
Arcone, SA (2002) Airborne-radar stratigraphy and electrical structure of temperate firn: Bagley Ice Field, Alaska, U.S.A. J. Glaciol., 48(161), 317334 (doi: 10.3189/172756502781831412)
Arcone, SA and Yankielun, NE (2000) 1.4 GHz radar penetration and evidence of drainage structures in temperate ice: Black Rapids Glacier, Alaska, U.S.A. J. Glaciol., 46(154), 477490 (doi: 10.3189/172756500781833133)
Booth, AD Mercer, A, Clark, R, Murray, T, Jansson, P and Jansson, P (2013) A comparison of seismic and radar methods to establish the thickness and density of glacier snow cover. Ann. Glaciol., 54(64), 7382 (doi: 10.3189/2013AoG64A044)
Bradford, JH Harper, JT and Brown, J (2009) Complex dielectric permittivity measurements from ground-penetrating radar data to estimate snow liquid water content in the pendular regime. Water Resour. Res., 45(8), (W08403) (doi: 10.1029/ 2008WR007341)
Brown, J, Bradford, JH Harper, J, Pfeffer, WT Humphrey, NF and Mosley-Thompson, ES (2012) Georadar-derived estimates of firn density in the percolation zone, western Greenland ice sheet. J. Geophys. Res., 117(F1), (F01011) (doi: 10.1029/2011JF002089)
Daniels, DJ (2004) Ground penetrating radar, 2nd edn. Institution of Electrical Engineers, London
Gusmeroli, A and Gusmeroli, A (2012) Ground penetrating radar detection of subsnow slush on ice-covered lakes in interior Alaska. Cryosphere, 6(6), 14351443 (doi: 10.5194/tc-6-1435-2012)
Gusmeroli, A, Jansson, P, Pettersson, R and Pettersson, R (2012) Twenty years of cold surface layer thinning at Storglaciären, sub-Arctic Sweden, 1989–2009. J. Glaciol., 58(207), 310 (doi: 10.3189/ 2012JoG11J018)
Gusmeroli, A, Arendt, A, Atwood, D, Kampes, B, Sanford, M and Young, JC (2013) Variable penetration depth of interferometric synthetic aperture radar signals in Alaska glaciers: a cold surface layer hypothesis. Ann. Glaciol., 54(64), 218223 (doi: 10.3189/ 2013AoG64A114)
Holmgren, J, Sturm, M, Yankielun, NE and Koh G (1998) Extensive measurements of snow depth using FM-CW radar. Cold Reg. Sci. Technol., 27(1), 1730 (doi: 10.1016/S0165-232X(97) 00020-7)
Kovacs, A, Gow, AJ and Morey, RM (1995) The in-situ dielectric constant of polar firn revisited. Cold Reg. Sci. Technol., 23(3), 245256 (doi: 10.1016/0165-232X(94)00016-Q)
Liu, Y and 6 others (2014) Assimilating satellite-based snow depth and snow cover products for improving snow predictions in Alaska. Adv. Water Resour., 54, 208227 (doi: 10.1016/ j.advwatres.2013.02.005)
Machguth, H, Eisen, O, Paul, F and Paul, F (2006) Strong spatial variability of snow accumulation observed with helicopter-borne GPR on two adjacent Alpine glaciers. Geophys. Res. Lett., 33(13), (L13503) (doi: 10.1029/2006GL026576)
Marchand, W-D, Killingtveit, A, Wilén, P and Wikström, P (2003) Comparison of ground-based and airborne snow depth measurements with georadar systems, case study. Nord. Hydrol., 34(5), 427448 (doi: 10.2166/nh.2003.025)
Marshall, HP Birkeland, K, Elder, K and Elder, K (2008) Helicopter-based microwave radar measurements in alpine terrain. In Campbell, C, Conger, S and Conger, S eds. Proceedings of the International Snow Science Workshop, 21–27 September 2008, Whistler, British Columbia, Canada. International Snow Science Workshop, Whistler, BC
Mayo, LR Trabant, DC and March, RS (2004) A 30-year record of surface mass balance (1966–95) and motion and surface altitude (1975–95) at Wolverine Glacier, Alaska. USGS Open File Rep. 2004-1069.
Panzer, B and 8 others (2013) An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn. J. Glaciol., 59(214), 244254 (doi: 10.3189/2013JoG12J128)
Ryser, C, Lüthi, M, Blindow, N, Suckro, S, Funk, M and Funk, M (2013) Cold ice in the ablation zone: its relation to glacier hydrology and ice water content. J. Geophys. Res. Earth Surf., 118(2), 693705 (doi: 10.1029/2012JF002526)
Sheriff, RE and Geldart, LP (1999) Exploration seismology.. Cambridge University Press, Cambridge
Tiuri, MT Sihvola, AH Nyfors, EG and Hallikainen, MT (1984) The complex dielectric constant of snow at microwave frequencies. IEEE J. Ocean. Eng., 9(5), 377382 (doi: 10.1109/ JOE.1984.1145645)
Topping, J (1972) Errors of observation and their treatment.. Chapman and Hall, London
Venier, GO and Cross, FR (1972) An experimental look at the use of radar to measure snow and ice depths. (CRC Technical Note 646) Communications Research Center, Ottawa
Yankielun, N, Rosenthal, W and Davis, RE (2004) Alpine snow depth measurements from aerial FMCW radar. Cold Reg. Sci. Technol., 40(1–2), (123–134) (doi: http://10.1016/j.coldregions.2004.06.005)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed