Skip to main content

The historical global sea-level budget

  • J.C. Moore (a1) (a2), S. Jevrejeva (a3) and A. Grinsted (a4)

We analyze the global sea-level budget since 1850. Good estimates of sea-level contributions from glaciers and small ice caps, the Greenland ice sheet and thermosteric sea level are available over this period, though considerable scope for controversy remains in all. Attempting to close the sea-level budget by adding the components results in a residual displaying a likely significant trend of ~0.37mma–1 from 1955 to 2005, which can, however, be reasonably closed using estimated melting from unsurveyed high-latitude small glaciers and ice caps. The sea-level budget from 1850 is estimated using modeled thermosteric sea level and inferences from a small number of mountain glaciers. This longer-term budget has a residual component that displays a rising trend likely associated with the end of the Little Ice Age, with much decadal-scale variability that is probably associated with variability in the global water cycle, ENSO and long-term volcanic impacts.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The historical global sea-level budget
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The historical global sea-level budget
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The historical global sea-level budget
      Available formats
Hide All
Antonov, J.I., Levitus, S. and Boyer, T.P.. 2005. Thermosteric sea level rise, 1955–2003. Geophys. Res. Lett., 32(12), L12602. (10.1029/ 2005GL023112.)
Chao, B.F., Wu, Y. and Li, Y.. 2008. Impact of artificial reservoir water impoundment on global sea level. Science, 320(5873), 212–214.
Church, J.A. and White, N.J.. 2006. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett., 33(1), L01602. (10.1029/2005GL024826.)
Cogley, J.G. 2009. Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann. Glaciol., 50(50), 96–100.
Domingues, C.M. and 6 others. 2008. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453(7198), 1090–1094.
Fekete, B.M., Vörösmarty, C.J. and Grabs, W.. 1999. Global, composite runoff fields based on observed river discharge and simulated water balances. Koblenz, Global Runoff Data Center. (GRDC Report 22.)
Folland, C.K. and Parker, D.E.. 1995. Correction of instrumental biases in historical sea surface temperature data. Q. J. R. Meteorol. Soc., 121(522), 319–367.
Gornitz, V. 2011. Impoundment, groundwater mining, and other hydrologic transformations: impacts on global sea level rise. In Douglas, B.C., Kearney, M.S. and Leatherman, S.P., eds. Sea level rise: history and consequences. San Diego, CA, Academic Press, 97–119.
Gregory, J.M., Lowe, J.A. and Tett, S.F.B.. 2006. Simulated global-mean sea level change over the last half-millennium. J. Climate, 19(18), 4576–4591.
Grinsted, A., Moore, J.C. and Jevrejeva, S.. 2007. Observational evidence for volcanic impact on sea level and the global water cycle. Proc. Natl. Acad. Sci. USA (PNAS), 104(50), 19,730–19,734.
Grinsted, A., Moore, J.C. and Jevrejeva, S.. 2009. Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Climate Dyn., 34(4), 461–472.
Hock, R., deWoul, M., Radiá, V. and Dyurgerov, M.. 2009. Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys. Res. Lett., 36(7), L07501. (10.1029/ 2008GL037020.)
Ishii, M. and Kimoto, M.. 2009. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr., 65(3), 287–299.
Ishii, M., Kimoto, M., Sakamoto, K. and Iwasaki, S.-I.. 2006. Steric sea level changes estimated from historical subsurface temperature and salinity analyses. J. Oceanogr., 61(2), 155–170.
Jevrejeva, S., Grinsted, A., Moore, J.C. and Holgate, S.. 2006. Nonlinear trends and multi-year cycle in sea level records. J. Geophys. Res., 111(C9), C09012. (10.1029/2005JC003229.)
Jevrejeva, S., Moore, J.C., Grinsted, A. and Woodworth, P.L.. 2008a. Recent global sea level acceleration started over 200 years ago. Geophys. Res. Lett., 35(8), L08715. (10.1029/2008GL033611.)
Jevrejeva, S., Moore, J.C. and Grinsted, A.. 2008b. Relative importance of mass and volume changes to global sea level rise. J. Geophys. Res., 113(D8), D08105. (10.1029/2007JD009208.)
Jevrejeva, S., Grinsted, A. and Moore, J.C.. 2009. Anthropogenic forcing dominates sea level rise since 1850. Geophys. Res. Lett., 36(20), L20706. (10.1029/2009GL040216.)
Jevrejeva, S., Moore, J.C. and Grinsted, A.. 2010. How will sea level respond to changes in natural and anthropogenic forcings by 2100? Geophys. Res. Lett., 37(7), L07703. (10.1029/ 2010GL042947.)
Kaplan, A., Kushnir, Y. and Cane, M.A.. 2000. Reduced space optimal interpolation of historical marine sea level pressure. J. Climate, 13(16), 2987–3002.
Kaser, G., Cogley, J.G., Dyurgerov, M.B., Meier, M.F. and Ohmura, A.. 2006. Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys. Res. Lett., 33(19), L19501. (10.1029/2006GL027511.)
Lettenmaier, D.P. and Milly, P.C.D.. 2009. Land waters and sea level. Nature Geosci., 2(7), 452–454.
Levitus, S., Antonov, J.I. and Boyer, T.P.. 2005. Warming of the world ocean, 1955–2003. Geophys. Res. Lett., 32(2), L02604. (10.1029/2004GL021592.)
Levitus, S., Antonov, J.I., Boyer, T.P., Locarnini, R.A., Garcia, H.E. and Mishonov, A.V.. 2009. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36(7), L07608. (10.1029/2008GL037155.)
Milly, P.C.D., Cazenave, A. and Gennero, C.. 2003. Contribution of climate-driven change in continental water storage to recent sea-level rise. Proc. Natl. Acad. Sci. USA (PNAS), 100(23), 13,158–13,161.
Mitrovica, J.X., Wahr, J., Matsuyama, I., Paulson, A. and Tamisiea, M.E.. 2006. Reanalysis of ancient eclipse, astronomic and geodetic data: a possible route to resolving the enigma of global sea-level rise. Earth Planet. Sci. Lett., 243(3–4), 390–399.
Ngo-Duc, T., Laval, K., Polcher, J., Lombard, A. and Cazenave, A.. 2005. Effects of land water storage on global mean sea level over the past half century. Geophys. Res. Lett., 32(9), L09704. (10.1029/2005GL022719.)
Oerlemans, J., Dyurgerov, M. and van de Wal, R.S.W.. 2007. Reconstructing the glacier contribution to sea-level rise back to 1850. Cryosphere, 1(1), 59–65.
Peltier, B. 2001. Global glacial isostatic adjustment and modern instrumental records of relative sea level history. In Douglas, B.C., Kearney, M.S. and Leatherman, S.P., eds. Sea level rise: history and consequences. San Diego, CA, Academic Press, 65–95.
Rignot, E., Box, J.E., Burgess, E. and Hanna, E.. 2008a. Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett., 35(20), L20502. (10.1029/2008GL035417.)
Rignot, E. and 6 others. 2008b. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci., 1(2), 106–110.
Robock, A. 2000. Volcanic eruptions and climate. Rev. Geophys., 38(2), 191–219.
Sahagian, D. 2000. Global physical effects of anthropogenic hydrological alterations: sea level and water redistribution. Global Planet. Change, 25(1–2), 39–48.
Shiklomanov, A.I. 1997. Comprehensive assessment of the freshwater resources of the world: assessment of water resources and water availability in the world. Geneva, World Meteorological Association. (Report E/CN.17/1997/9.)
Stenchikov, G.L., Delworth, G., Ramaswamy, V., Stouffer, R.J., Wittenberg, A. and Zeng, F.. 2009. Volcanic signals in oceans. J. Geophys. Res., 114(D16), D16104. (10.1029/2008JD011673.)
Trenberth, K.E. 2009. An imperative for climate change planning: tracking Earth’s global energy. Curr. Opin. Environ. Sustain., 1(1), 19–27.
Trenberth, K.E. and Dai, A.. 2007. Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett., 34(15), L15702. (10.1029/ 2007GL030524.)
Velicogna, I. 2009. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett., 36(19), L19503. (10.1029/2009GL040222.)
Vermeer, M. and Rahmstorf, S.. 2010. Global sea level linked to global temperature. Proc. Natl. Acad. Sci. USA (PNAS), 106(51), 21,527–21,532.
von Schuckmann, K., Galliard, F. and Le Traon, P.-Y.. 2009. Global hydrographic variability patterns during 2003–2008. J. Geophys. Res., 114(C9), C09007. (10.1029/2008JC005237.)
Wingham, D.J., Shepherd, A., Muir, A. and Marshall, G.J.. 2006. Mass balance of the Antarctic ice sheet. Philos. Trans. R. Soc. London, Ser. A, 364(1844), 1627–1635.
Woodworth, P.L. and Player, R.. 2003. The Permanent Service for Mean Sea Level: an update to the 21st century. J. Coastal Res., 19(2), 287–295.
Wu, X.M. and 8 others. 2010. Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nature Geosci., 3(9), 642–646.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 1
Total number of PDF views: 28 *
Loading metrics...

Abstract views

Total abstract views: 48 *
Loading metrics...

* Views captured on Cambridge Core between 14th September 2017 - 19th August 2018. This data will be updated every 24 hours.