Skip to main content
×
×
Home

Ice composition evidence for the formation of basal ice from lake water beneath a cold-based Antarctic glacier

  • R. D. Lorrain (a1), S. J. Fitzsimons (a2), M. J. Vandergoes (a2) and M. Stiévenard (a3)
Abstract

Entrainment of debris by cold-based glaciers having basal temperatures as low as — 17°C can be observed in the Dry Valleys of south Victoria Land, Antarctica. The classical models developed to explain debris incorporation at the glacier base are inappropriate in such cases, since the basal temperature is well below the freezing point. An alternative model, based on the presence of ice-marginal lakes, has recently been proposed by one of the authors (S. F.). In this model, transient wet-base conditions can occur as ice flows onto the unfrozen sediments of the lake bottom, creating conditions favorable to the entrainment of sediments and to ice accretion by water freezing.

Here we describe a situation where this model is consistent with an ice-composition study of the basal part of Suess Glacier, Taylor Valley. The stable isotope composition indicates that water freezing, most probably lake water, plays a major role in the formation of the basal ice layers. Total gas content of this basal ice is considerably depleted when compared to meteoric glacier ice, in accordance with a rejection mechanism during freezing. Its gas composition, strongly enriched in CO2, is also indicative of the presence of a former liquid phase.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ice composition evidence for the formation of basal ice from lake water beneath a cold-based Antarctic glacier
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ice composition evidence for the formation of basal ice from lake water beneath a cold-based Antarctic glacier
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ice composition evidence for the formation of basal ice from lake water beneath a cold-based Antarctic glacier
      Available formats
      ×
Copyright
References
Hide All
Arnola, J. M., Raynaud, D., Neftel, A. and Oeschger, H.. 1983. Comparison of CO2 measurements by two laboratories on air from bubbles in polar ice. Nature, 303(5916), 410-413.
Blunier, T. and 6 others. 1993. Atmospheric methane record from a Greenland ice core over the last 1000 years. Geophys. Res. Lett., 20(20), 2219-2222.
Cartwright, K. and Harris, H.J.H.. 1978. Origin of water in lakes and ponds of the Dry Valley region, Antarctica. [Abstract.] Dry Valley Drill. Proj. Bull. 8, 8.
Chinn, T.J.H. 1991. Polar glacier margin and debris features. Mem. Soc. Geol. Ital., 46, 25-44.
Chinn, T. J. 1993. Physical hydrology of the Dry Valley lakes. In Green, W.J. and Friedmann, E. I., eds. Physical and biogeochemical processes in Antarctic laes. Washington, DC, American Geophysical Union, 1-51. (AntarcticResearch Series 59.)
Craig, H. 1961. Isotopic variations in meteoric waters. Science, 133(3465), 1702-1703.
Craig, H., Wharton, Jr and McKay, C. P.R. A.. 1992. Oxygen supersaturation in ice-covered Antarctic lakes: biologic versus physical contributions. Science, 255(5042), 318-321.
Fitzsimons, S. J. 1996. Formation of thrust-block moraines at the margins of dry- based glaciers, south Victoria Land, Antarctica. Ann. Glaciol., 22, 68-74.
Fitzsimons, S.J., McManus, K.J. and Lorrain, R. D.. 1999. Structure and strength of basal ice and substrate of a dry-based glacier: evidence for substrate deformation at sub-freezing temperatures. Ann. Glaciol., 28 (see paper in this volume).
Holdsworth, G. 1974. Meserve Glacier, Wright Valley, Antarctica: Part 1. Basal processes. Ohio State Univ. Inst. Polar Stud. Rep. 37.
Jouzel, J. and Souchez, R. A.. 1982. Melting-refreezing at the glacier sole and the isotopic composition of the ice. J. Glaciol., 28(98), 35-42.
Martinerie, P., Raynaud, D., Etheridge, D. M., Barnola, J.-M. and Mazau-dier, D.. 1992. Physical and climatic parameters which influence the air content of polar ice. Earth Planet. Sci. Lett., 112(1-4), 1-13.
Martinerie, P., Lipenkov, VYa., Raynaud, D., Chappellaz, J., Barkov, N.I. and Lorius, C.. 1994. Air content paleo record in the Vostok ice core (Antarctica): a mixed record of climatic and glaciological parameters. J. Geophys. Res., 99(D5), 10, 565-10, 576.
Raynaud, D., Delmas, D., Ascencio, J. M. and Legrand, M.. 1982. Gas extraction from polar ice cores: a critical issue for studying the evolution of atmospheric CO2 and ice-sheet surface elevation. Ann. Glaciol., 3, 265-268.
Raynaud, D., Chappellaz, J., Barnola, Ye, J. M.. Korotkevich, S. and Lorius, C.. 1988. Climatic and CH4 cycle implications of glacial-interglacial CH4 change in the Vostok ice core. Nature, 333(6174), 655-657.
Rozanski, K., Araguás-Araguás, L. and Gonfiantini, R.. 1991. Isotopic patterns in modern global precipitation. In Swart, P. K., Lohmann, K. C., McKenzie, J. A. and Savin, S., eds. Climate change in continental isotopic re-cords. Washington, DC, American Geophysical Union, 1-36. (Geophysical Monograph 78.)
Sharp, M., Jouzel, J, Hubbard, B. and Lawson, W.. 1994. The character, structure and origin of the basal ice layer of a surge-type glacier. J. Glaciol., 40(135), 327-340.
Souchez, R. A. and Jouzel, J.. 1984. On the isotopic composition in •D and •18O of water andice during freezing. J. Glaciol., 30(106), 369-372.
Souchez, R., Lemmens, M. and Chappellaz, J.. 1995a. Flow-induced mixing in the GRIP basal ice deduced from the CO2 and CH4 records. Geophys. Res. Lett., 22(1), 41-44.
Souchez, R., Janssens, L., Lemmens, M. and Stauffer, B.. 1995b. Verylowoxy- gen concentration in basal ice from Summit, central Greenland. Geophys. Res. Lett., 22(15), 2001-2004.
Stauffer, B., Neftel, A., Oeschger, H. and Schwander, J.. 1985. CO2 concentration in air extracted from Greenland ice samples. In Langway, C. C. Jr, Oeschger, H. and Dansgaard, W., eds. Greenland ice core: geophysics, geochemistry, and the environment. Washington, DC, American Geophysical Union, 85-89. (Geophysical Monograph 33.)
Wilson, A.T., Holdsworth, R. and Hendy, C. H.. 1974. Lake Vanda: source of heating. Antarct. J. U.S., 9(4), 137-138.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed