Skip to main content Accessibility help
×
×
Home

Incorporation of particulates into accreted ice above subglacial Vostok lake, Antarctica

  • George Royston-Bishop (a1), John C. Priscu (a2), Martyn Tranter (a1), Brent Christner (a2), Martin J. Siegert (a1) and Victoria Lee (a1)...
Abstract

The nature of microscopic particulates in meteoric and accreted ice from the Vostok (Antarctica) ice core is assessed in conjunction with existing ice-core data to investigate the mechanism by which particulates are incorporated into refrozen lake water. Melted ice samples from a range of ice-core depths were filtered through 0.2 μm polycarbonate membranes, and secondary electron images were collected at ×500 magnification using a scanning electron microscope. Image analysis software was used to characterize the size and shape of particulates. Similar distributions of major-axis lengths, surface areas and shape factors (aspect ratio and compactness) for particulates in all accreted ice samples suggest that a single process may be responsible for incorporating the vast majority of particulates for all depths. Calculation of Stokes settling velocities for particulates of various sizes implies that 98% of particulates observed could ‘float’ to the ice–water interface with upward water velocities of 0.0003 ms–1 where they could be incorporated by growing ice crystals, or by rising frazil ice crystals. The presence of particulates that are expected to sink in the water column (2%) and the uneven distribution of particulates in the ice core further implies that periodic perturbations to the lake’s circulation, involving increased velocities, may have occurred in the past.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Incorporation of particulates into accreted ice above subglacial Vostok lake, Antarctica
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Incorporation of particulates into accreted ice above subglacial Vostok lake, Antarctica
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Incorporation of particulates into accreted ice above subglacial Vostok lake, Antarctica
      Available formats
      ×
Copyright
References
Hide All
Basile, I., Grousset, F.E., Revel, M., Petit, J.R., Biscaye, P.E. and Barkov, N.I.. 1997. Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth Planet Sci. Lett., 146(3–4), 573–589.
Bell, R.E., Studinger, M., Tikku, A.A., Clarke, G.K.C., Gutner, M.M. and Meertens, C.. 2002. Origin and fate of Lake Vostok water frozen to the base of the East Antarctic ice sheet. Natur., 416(6878), 307–310.
Gorman, M.R. and Siegert, M.J.. 1999. Penetration of Antarctic subglacial lakes by VHF electromagnetic pulses: information on the depth and electrical conductivity of basal water bodies. J. Geophys. Res., 104(B12), 29,311–29,320.
Jouzel, J. and 9 others. 1999. More than 200 m of lake ice above subglacial Lake Vostok, Antarctica. Scienc., 286(5447), 2138–2141.
Karl, D.M., Bird, D.F., Bjorkman, K., Houlihan, T., Shackelford, R. and Tupas, L.. 1999. Microorganisms in the accreted ice of Lake Vostok, Antarctica. Scienc., 286(5447), 2144–2147.
Lerman, A. 1979. Geochemical processes: water and sediment environments. New York, Wiley-Interscience.
Lide, D.R., ed. 2003. CRC handbook of chemistry and physics . Eighty-fourth edition. Boca Raton, FL, CRC Press.
Petit, J.R. and 18 others. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Natur., 399(6735), 429–436.
Priscu, J.C. and 11 others. 1999. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Scienc., 286(5447), 2141–2144.
Priscu, J.C. and 9 others. 2003. An international plan for Antarctic subglacial lake exploration. Polar Geogr., 27(1), 69–83.
Siegert, M.J. 2005. Reviewing the origin of Lake Vostok and its sensitivity to ice sheet changes. Progress in Physical Geograph., 29, 156–170.
Siegert, M.J., Dowdeswell, J.A., Gorman, M.R. and McIntyre, N.F.. 1996. An inventory of Antarctic sub-glacial lakes. Antarctic Scienc., ˚(3), 281–286
Siegert, M.J., Kwok, R., Mayer, C. and Hubbard, B.. 2000. Water exchange between the subglacial Lake Vostok and the overlying ice sheet. Natur., 403(6770), 643–646
Siegert, M.J. and 6 others. 2001. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Natur., 414(6864), 603–609.
Siegert, M.J., Tranter, M., Ellis-Evans, J.C., Priscu, J.C. and Lyons, W.B.. 2003. The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. Hydrol. Process., 17, 795–814.
Simôes, J.C. and 7 others. 2002. Evidence of glacial flour in the deepest 89 m of the Vostok ice core. Ann. Glaciol., 35, 340–346.
Souchez, R., Petit, J.R., Tison, J.L., Jouzel, J. and Verbeke, V.. 2000. Ice formation in subglacial Lake Vostok, central Antarctica. Earth Planet Sci. Lett., 181(4), 529–538.
Souchez, R., Jean-Baptiste, P., Petit, J.R., Lipenkov, V.Y. and Jouzel, J.. 2002. What is the deepest part of the Vostok ice core telling us? Earth Sci. Rev., 60(1–2), 131–146.
Souchez, R., Petit, J.R., Jouzel, J., de Angelis, M. and Tison, J.L.. 2003. Reassessing Lake Vostok’s behaviour from existing and new ice core data. Earth Planet Sci. Lett., 217(1–2), 163–170.
Studinger, M., Bell, R.E. and Tikku, A.A.. 2004. Estimating the depth and shape of subglacial Lake Vostok’s water cavity from aerogravity data. Geophys. Res. Lett., 31(L12401).(10.1029/2004GLO19801.)
Tabacco, I.E., Bianchi, C., Zirizzotti, A., Zuccheretti, E., Forieri, A. and la Vedova, A.. 2002. Airborne radar survey above Vostok region, east-central Antarctica: ice thickness and Lake Vostok geometry. J. Glaciol., 48(160), 62–69.
Wüest, A. and Carmack, E.. 2000. A priori estimates of mixing and circulation in the hard-to-reach water body of Lake Vostok. Ocean Modellin., 2, 29–43.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed