Skip to main content
×
×
Home

Influence of precipitation seasonality on glacier mass balance and its sensitivity to climate change

  • Koji Fujita (a1)
Abstract

Numerical calculations are described, aimed at evaluating the influence of precipitation seasonality (summer and winter) on glacier mass balance. First, equilibrium-line altitudes (ELAs) are modeled using idealized meteorological variables. Modeled climatic conditions (summer mean temperature and annual precipitation) at the ELA of glaciers located within a winter accumulation pattern confirm the observational results of earlier studies. However, the ELA of glaciers located within a summer accumulation climate pattern locates in a colder environment than that of glaciers located within a winter accumulation climate pattern. This difference is mainly due to the annual snow accumulation and the surface albedo. A warming test (+1K) reveals higher sensitivities for the glaciers located within a summer accumulation pattern than for the glaciers located within a winter accumulation pattern. In a humid environment, a significant decrease in snow accumulation on the glaciers located within a summer accumulation pattern directly causes higher sensitivities. In an arid environment, on the other hand, the decreased summer snow induces accelerated melting by lowering the surface albedo and thus increasing absorption of solar radiation on the glaciers located within a summer accumulation pattern. Both influences are due to significant differences in summer precipitation. This study shows the importance of precipitation seasonality on the climatic sensitivity of glacier mass balance, which in previous studies has been linked only with annual precipitation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Influence of precipitation seasonality on glacier mass balance and its sensitivity to climate change
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Influence of precipitation seasonality on glacier mass balance and its sensitivity to climate change
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Influence of precipitation seasonality on glacier mass balance and its sensitivity to climate change
      Available formats
      ×
Copyright
References
Hide All
Ageta, Y. and Higuchi, K.. 1984. Estimation of mass balance components of a summer-accumulation type glacier in the Nepal Himalaya. Geogr. Ann., 66A(3), 249–255.
Braithwaite, R.J. and Raper, S.C.B.. 2002. Glaciers and their contribution to sea level change. Phys. Chem. Earth, 27(32–34), 1445–1454.
Cogley, J.G. and Adams, W.P.. 1998. Mass balance of glaciers other than the ice sheets. J. Glaciol., 44(147), 315–325.
Dyurgerov, M.B. and Meier, M.F.. 1997a. Mass balance of mountain and subpolar glaciers: a new global assessment for 1961–1990. Arct. Alp. Res., 29(4), 379–391.
Dyurgerov, M.B. and Meier, M.F.. 1997b. Year-to-year fluctuations of global mass balance of small glaciers and their contribution to sea-level changes. Arct. Alp. Res., 29(4), 392–402.
Fujita, K. 2007. Effect of dust event timing on glacier runoff: sensitivity analysis for a Tibetan glacier. Hydrol. Process., 21(21), 2892–2896.
Fujita, K. and Ageta, Y.. 2000. Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model. J. Glaciol., 46(153), 244–252.
Fujita, K., Seko, K., Ageta, Y., Jianchen, P. and Tandong, Y.. 1996. Superimposed ice in glacier mass balance on the Tibetan Plateau. J. Glaciol., 42(142), 454–460.
Fujita, K., Nakawo, M., Fujii, Y. and Paudyal, P.. 1997. Change in glaciers in Hidden Valley, Mukut Himal, Nepal Himalayas, from 1974 to 1994. J. Glaciol., 43(145), 583–588.
Fujita, K., Takeuchi, N. and Seko, K.. 1998. Glaciological observations of Yala Glacier in Langtang Valley, Nepal Himalayas, 1994 and 1996. Bull. Glacier Res. 16, 75–81.
Fujita, K., Ageta, Y., Jianchen, P. and Tandong, Y.. 2000. Mass balance of Xiao Dongkemadi glacier on the central Tibetan Plateau from 1989 to 1995. Ann. Glaciol., 31, 159–163.
Fujita, K., Nakazawa, F. and Rana, B.. 2001a. Glaciological observations on Rikha Samba Glacier in Hidden Valley, Nepal Himalayas, 1998 and 1999. Bull. Glaciol. Res. 18, 31–35.
Fujita, K., Kadota, T., Rana, B., Kayastha, R.B. and Ageta, Y.. 2001b. Shrinkage of Glacier AX010 in Shorong region, Nepal Himalayas in the 1990s. Bull. Glaciol. Res. 18, 51–54.
Gregory, J.M. and Oerlemans, J.. 1998. Simulated future sea-level rise due to glacier melt based on regionally and seasonally resolved temperature changes. Nature, 391(6666), 474–476.
Kondo, J. 1994. [Meteorology of water environment.] Tokyo, Asakura. [In Japanese.]
Meier, M.F. 1984. Contribution of small glaciers to global sea level. Science, 226(4681), 1418–1421.
Oerlemans, J. 1992. Climate sensitivity of glaciers in southern Norway: application of an energy-balance model to Nigardsbreen, Hellstugubreen and Alfotbreen. J. Glaciol., 38(129), 223–232.
Oerlemans, J. and Fortuin, J.P.F.. 1992. Sensitivity of glaciers and small ice caps to greenhouse warming. Science, 258(5079), 115–117.
Ohmura, A., Kasser, P. and Funk, M.. 1992. Climate at the equilibrium line of glaciers. J. Glaciol., 38(130), 397–411.
Raper, S.C.B. and Braithwaite, R.J.. 2006. Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature, 439(7074), 311–313.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 63 *
Loading metrics...

Abstract views

Total abstract views: 68 *
Loading metrics...

* Views captured on Cambridge Core between 14th September 2017 - 27th May 2018. This data will be updated every 24 hours.