Skip to main content Accessibility help
×
Home

The slow advance of a calving glacier: Hubbard Glacier, Alaska, U.S.A.

  • Dennis C. Trabant (a1), Robert M. Krimmel (a2), Keith A. Echelmeyer (a3), Sandra L. Zirnheld (a3) and Daniel H. Elsberg (a3)...

Abstract

Hubbard Glacier is the largest tidewater glacier in North America. In contrast to most glaciers in Alaska and northwestern Canada, Hubbard Glacier thickened and advanced during the 20th century. This a typical behavior is an important example of how insensitive to climate a glacier can become during parts of the calving glacier cycle. As this glacier continues to advance, it will close the seaward entrance to 50 km long Russell Fjord and create a glacier-dammed, brackish-water lake. This paper describes measured changes in ice thickness, ice speed, terminus advance and fjord bathymetry of Hubbard Glacier, as determined from airborne laser altimetry, aerial photogrammetry, satellite imagery and bathymetric measurements.The data show that the lower regions of the glacier have thickened by as much as 83 m in the last 41 years, while the entire glacier increased in volume by 14.1 km 3. Ice speeds are generally decreasing near the calving face from a high of 16.5 md −1in1948 to11.5 md −1in 2001. The calving terminus advanced at an average rate of about 16 m a−1 between 1895 and 1948 and accelerated to 32 m a−1 since 1948. However, since 1986, the advance of the part of the terminus in Disenchantment Bay has slowed to 28 m a−1. Bathymetric data from the lee slope of the submarine terminal moraine show that between 1978 and 1999 the moraine advanced at an average rate of 32 m a−1, which is the same as that of the calving face.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The slow advance of a calving glacier: Hubbard Glacier, Alaska, U.S.A.
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The slow advance of a calving glacier: Hubbard Glacier, Alaska, U.S.A.
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The slow advance of a calving glacier: Hubbard Glacier, Alaska, U.S.A.
      Available formats
      ×

Copyright

References

Hide All
Arendt, A., Echelmeyer, K. A., Harrison, W. D., Lingle, C. and Valentine, V.. 2002. Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science, 297(5580), 382386.
Brown, C. S., Meier, M. F. and Post, A.. 1982. Calving speed of Alaska tidewater glaciers, with application to Columbia Glacier. U.S. Geol. Surv. Prof. Pap. 1258-C.
Davidson, G. 1903. The Alaska Boundary. San Francisco, Alaska Packers Association.
de Laguna, F. 1972. Under Mount Saintelias: Thehistoryand Culture of The Yakutat Tlingit. Washington, DC, Smithsonian Institution Press. (Smithsonian Contributions to Anthropology 7.)
Echelmeyer, K. A. and 8 others. 1996. Airborne surface profiling of glaciers: a case-study in Alaska. J. Glaciol., 42(142), 538547.
Gilbert, G.K. 1904. Glaciers and Glaciation. NewYork, N.Y., Doubleday, Page and Co. (Harriman Alaska Expedition, 1899, Harriman Alaska Series Vol.3.)
Krimmel, R. M. 2001. Photogrammetric data set, 1957–2000, and bathymetric measurements for Columbia Glacier, Alaska. U.S. Geol. Surv. Water-Resou R. Invest. Rep. 01-4089.
Mayo, L. R. 1988. Hubbard Glacier nearYakutat, Alaska: the ice damming and breakout of Russell Fiord/Lake, 1986. U.S. Geol. Surv. Water-Supply Pap. 2325,4249.
Mayo, L.R. 1989. Advance of Hubbard Glacier and 1986 outburst of Russell Fiord, Alaska, U.S.A. Ann. Glaciol., 13,189194.
Motyka, R. J. and Post, A.. 1995. Taku Glacier: influence of sedimentation, accumulation to total area ratio, and channel geometry on the advance of a fjord-type glacier. in Engstrom, D.R., ed. Third Glacier Bay Science Symposium, 14–18 September 1993. Proceedings. Anchorage, AK, National Park Service, 3845.
National Oceanic and Atmospheric Administration (NOAA).1978. National Ocean Service (Nos) Hydrographic Survey Data On Cd-Rom. Boulder, CO, U.S. Department of Commerce. National Oceanic and Atmospheric Administration (NOAA). National Ocean Service (NOS). National Geophysical Data Center (NGDC). (H-09779.)
National Oceanic and Atmospheric Administration (NOAA). 1999. National Ocean Service (Nos) Hydrographic Survey Data On Cd-Rom. Boulder, CO, U.S. Department of Commerce. National Oceanic and Atmospheric Administration (NOAA). National Ocean Service (NOS). National Geophysical Data Center (NGDC). (H-10902.)
Plafker, G. and Miller, D. J.. 1958. Glacial features and surficial deposits of Malaspina District, Alaska. U.S. Geol. Surv. Misc. Geol. Invest. 1-271, map. (Scale:1:125,000.)
Post, A. 1975. Preliminary hydrography and historic terminal changes of Columbia Glacier, Alaska. U.S. Geol. Surv. Hydrol. Invest. Atlas HA-559, 3 maps (scale1:10,000).
Post, A. 1980a. Preliminary bathymetry of Aialik Bay and neoglacial changes of Aialik and Pederson Glaciers, Alaska. U.S. Geol. Surv. Open File Rep. 80-423.
Post, A. 1980b. Preliminary bathymetry of Blackstone Bay and Neoglacial changesof Blackstone Glacier, Alaska. U.S. Geol. Surv. Open File Rep. 80-418
Post, A. 1980c. Preliminary bathymetry of McCarty Fiord and neoglacial changesof McCarty Glacier, Alaska. U.S. Geol. Surv. Open File Rep. 80-424.
Post, A. 1980d. Preliminary bathymetry of Northwestern Fiord and neoglacial changes of Northwestern Glacier, Alaska. U. S. Geol. Surv. Openfile Rep. 80-414.
Post, A. and Motyka, R. J.. 1995. Taku and LeConte Glaciers, Alaska: calving-speed control of Late-Holocene asynchronous advances and retreats. Phys. Geog R., 16(1), 5982.
Reeburgh, W.S., Muench, R. D. and Cooney, R.T.. 1976. Oceanographic conditions during 1973 in Russell Fjord, Alaska. Estuar. Coastal Mar. Sci., 4,129145.
Russell, I. C. 1891. An expedition to Mount St. Elias, Alaska. Nat. Geogr. Mag., 3,53204.
Russell, I. C. 1893. Second expedition to Mount St. Elias. in Powell, J.W., ed. Thirteenth Annual Report of The United States Geological Survey To The Secretary The Interior, 18 91–’92: Part Ii. Geology. Washington, DC, Government Printing Office, 791.
Seitz, H. R., Thomas, D. S. and Tomlinson, B.. 1986. The storage and release of water from a large glacier-dammed lake: Russell Lake near Yakutat, Alaska, 1986. U.S. Geol. Surv. Open File Rep. 86-545.
Tarr, R. S. and Martin, L.. 1906. Recent changes of level in theYakutat Bay region, Alaska. Geol. Soc. Am. Bull., 17, 2964.
Trabant, D. C., Krimmel, R. M. and Post, A.. 1991. A preliminary forecast of the advance of Hubbard Glacier and its influence on Russell Fiord, Alaska. U.S. Geol. Surv. Water-Resour. Invest. Rep. 90-4172.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed