Skip to main content Accessibility help
×
×
Home

Surge potential and drainage-basin characteristics in East Greenland

  • Hester Jiskoot (a1) (a2) (a3), Tavi Murray (a2) and Adrian Luckman (a3)

Abstract

We introduce a new glacier inventory of central East Greenland and use the collected data to test proposed theories on surging. The glacier inventory contains 259 glaciers, of which 10 have observed surges and a further 61 are inferred surge-type. The total glaciated area is 5.5×103 km2. The inventory was created from a combination of remote-sensing data and maps, and some 24 glacial and geological inventory parameters were collected for each glacier. A multivariate logistic analysis is used to test which combination of glacial and environmental data is conducive to surging behaviour in East Greenland. Three different models suggest that glaciers with a large complexity, low slope and oriented in a broad arc from northeast to south are most likely to be of surge type. Geological conditions, and hence substrate character, appeared not to be related to surge potential. On the basis of these results and the surge dynamics in this region, we suggest a hydrologically controlled surge mechanism operates in central East Greenland.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Surge potential and drainage-basin characteristics in East Greenland
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Surge potential and drainage-basin characteristics in East Greenland
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Surge potential and drainage-basin characteristics in East Greenland
      Available formats
      ×

Copyright

References

Hide All
Clarke, G. K. C., Schmok, J.P., Ommanney, C. S. L. and Collins, S.G.. 1986. Characteristics of surge-type glaciers. J. Geophys. Res., 91(B7), 71657180
Colvill, A. J. 1984. Some observations on glacier surges, with notes on the Roslin glacier, East Greenland. in Miller, K.J., ed. The International Karakoram Project. Proceedings of The International Conference. Vol. 1. Cambridge, Cambridge University Press, 6475.
Dahl-Jensen, D., Dahl-Jensen, T. and Gundestrup, N. S.. 2001. Earthquakes and ice cores point to wet feet at the NorthGRIP deep drill site. [Abstract.] Eos, 82(47), Fall Meeting Supplement, F529.
Dowdeswell, J. A., Hamilton, G. S. and Hagen, J. O.. 1991. The duration of the active phase on surge-type glaciers: contrasts between Svalbard and other regions. J. Glaciol., 37(127), 388400.
Dwyer, J. L. 1995. Mapping tidewater glacier dynamics in East Greenland using Landsat data. J. Glaciol., 41(139), 584595.
Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J. and Gogineni, P.. 2001. High geothermal heat flow, basal melt, and the origin of rapid ice flow in central Greenland. Science, 294(5550), 23382342.
Gregersen, S. 1989 .The seismicity of Greenland. in Gregersen, S. and Basham, P.W., eds. Earthquakes At North-Atlantic Passive Margins: Neotectonics Postglacial Rebound. Dordrecht, etc., Kluwer Academic Publishers, 345 353. (NATO ASI Series C: Mathematicaland Physical Sciences 266.)
Hamilton, G. S. 1992. Investigations of Surge-Type Glaciers In Svalbard. (Ph.D. thesis, University of Cambridge.)
Hayes, K. 2001. Controls On The Incidence of Glacier Surging. (Ph.D. thesis, University of Leeds.)
Hendriksen, N. and Watts, S.. 1968. Geological reconnaissance of the Scorsby Sund Fjord complex. Grønl. Geol. Undersøgelse, Rapp. 15,7277.
Jiskoot, H., Boyle, P. and Murray, T.. 1998. The incidence of glacier surging in Svalbard: evidence from multivariate statistics. Comput. Geosci., 24(4), 387399.
Jiskoot, H., Murray, T. and Boyle, P.. 2000. Controls on the distribution of surge-type glaciers in Svalbard. J. Glaciol., 46(154), 412422.
Jiskoot, H., Pedersen, A. K. and Murray, T.. 2001. Multi-model photogrammetric analysis of the 1990s surge of Sortebræ, East Greenland. J. Glaciol., 47(159), 677687.
Kamb, B. 1987. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res., 92(B9), 90839100.
Kamb, B. and 7 others. 1985. Glacier surge mechanism: 1982–1983 surge of Variegated Glacier, Alaska. Science, 227(4686), 469479.
Luckman, A., Murray, T., Jiskoot, H., Pritchard, H. and Strozzi, T.. 2003. ERS SAR feature-tracking measurement of outlet glacier velocities on a regional scale in East Greenland. Ann. Glaciol., 36 (see paper in this volume).
Murray, T. and 6 others. 2000. Glacier surge propagation by thermal evolution at the bed. J. Geophys. Res., 105(B6), 13,49113,507.
Murray, T., Strozzi, T., Luckman, A., Pritchard, H. and Jiskoot, H.. 2002. Ice dynamics during a surge of Sortebræ, East Greenland. Ann. Glaciol., 34, 323329.
Murray, T., Luckman, A., Strozzi, T. and Nuttall, A.-M.. 2003. The initiation of glacier surging at Fridtjovbreen, Svalbard. Ann. Glaciol., 36 (see paper in this volume).
Nuttall, A.-M. 1993. Glaciological Investigations In East Greenland Using Digital Landsat Imagery. (M.Phil thesis, University of Cambridge.)
Paterson, W. S. B. 1994.The Physics of Glaciers. Third Edition. Oxford, etc., Elsevier.
Post, A. 1969. Distribution of surging glaciers in western North America. J. Glaciol., 8(53), 229240.
Rucklidge, J. 1966. Observation of hollows in the snow surface of Torv Gletscher, East Greenland. J. Glaciol.,6(45),446449.
Rutishauser, H. 1971. Observations on a surging glacier in East Greenland. J. Glaciol., 10(59), 227236.
Thomsen, T. and Weidick, A.. 1993. Climate change impacts on northern water resources in Greenland. in Prowse, T. D., Ommanney, C. S. L. and Ulmer, K. E., eds. Proceedings of The θTh International Northern Research Basins Symposium/Workshop, 14–22 August 1992: Whitehorse, Dawson Eagle Plains, Yukon; Inuvik, Northwest Territories. Vol. 2. Saskatoon, Saskatchewan, National Hydrology Research Institute, Environment Canada, 749781. (NHRI Symposium No. 10.)
Truffer, M., Motyka, R. J., Harrison, W. D., Echelmeyer, K. A., Fisk, B. and Tulaczyk, S.. 1999. Subglacial drilling at Black Rapids Glacier, Alaska, U.S.A.: drilling method and sample descriptions. J. Glaciol., 45(151), 495505.
Weidick, A. 1988. Surging glaciers in Greenland: a status. GrøNl. Geol. UndersøGelse, Rapp. 140,106110.
Weidick, A. 2001. Neoglacial glaciations around Hans Tausen Iskappe, Peary Land, North Greenland. Medd. Grønl., Geoscience 39, 526.
Weidick, A., Bøggild, C. E. and Knudsen, N. T.. 1992. Glacier inventory and atlas of West Greenland. Grønl. Geol. Undersøgelse, Rapp. 158.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed