Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T04:31:53.648Z Has data issue: false hasContentIssue false

Diatom communities differ among Antarctic moss and lichen vegetation types

Published online by Cambridge University Press:  17 December 2020

Jordan M. Bishop*
Affiliation:
Department of Ecology, Charles University, Prague, Czech Republic
Jane Wasley
Affiliation:
Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia Environmental Protection Program, Australian Antarctic Division, Kingston, TAS, Australia
Melinda J. Waterman
Affiliation:
Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
Tyler J. Kohler
Affiliation:
Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Bart Van de Vijver
Affiliation:
Meise Botanic Garden, Research Department, Meise, Belgium University of Antwerp, Department of Biology, Antwerp, Belgium
Sharon A. Robinson
Affiliation:
Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia Global Challenges Program, University of Wollongong, Wollongong, NSW, Australia
Kateřina Kopalová
Affiliation:
Department of Ecology, Charles University, Prague, Czech Republic

Abstract

Continental Antarctica is a polar desert containing sparse pockets of vegetation within ice-free areas. Despite the recognized association between lichens, mosses and epiphytic diatoms, the environmental factors controlling diatom community structure are poorly understood. We investigated the association between diatom communities and host vegetation characteristics by experimentally adding nutrients and/or water to two bryophyte (healthy and moribund) and two lichen (crustose and Usnea) vegetation types in the Windmill Islands. Diatom communities were morphologically characterized, diversity indices calculated and differences between treatments, vegetation type and vegetation characteristics tested. We identified 49 diatom taxa, 8 of which occurred with > 1% relative abundance. Bryophyte and lichen vegetation harboured significantly different diatom communities, both in composition and diversity indices. Specifically, Luticola muticopsis was more prevalent in moribund bryophytes and crustose lichens, and Usnea lichens showed lower species richness than other types. While nutrient and water additions did not significantly alter diatom communities, diversity indices and some species showed relationships with vegetation physiological characteristics, notably %N and δ13C, suggesting the importance of ambient gradients in water and nutrient availability. Collectively, this work suggests that future conditions favouring the dominance of a particular vegetation type may have a homogenizing effect on the terrestrial diatom communities of East Antarctica.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 10.1111/j.1442-9993.2001.01070.pp.x.Google Scholar
Ball, B.A. & Virginia, R.A. 2014. The ecological role of moss in a polar desert: implications for aboveground-belowground and terrestrial-aquatic linkages. Polar Biology, 37, 10.1007/s00300-014-1465-2.CrossRefGoogle Scholar
Beyer, L., Bölter, M. & Seppelt, R.D. 2000. Nutrient and thermal regime, microbial biomass, and vegetation of Antarctic soils in the Windmill Islands region of East Antarctica (Wilkes Land). Arctic, Antarctic, and Alpine Research, 32, 10.1080/15230430.2000.12003336.CrossRefGoogle Scholar
Chattová, B. 2018. Diatoms (Bacillariophyta) associated with lichens from Ulu Peninsula (James Ross Island, NE Antarctic Peninsula). Czech Polar Reports, 8, 10.5817/CPR2018-2-12.CrossRefGoogle Scholar
Chown, S.L., Clarke, A., Fraser, C.I., Cary, S.C., Moon, K.L. & McGeoch, M.A. 2015. The changing form of Antarctic biodiversity. Nature, 522, 10.1038/nature14505.CrossRefGoogle ScholarPubMed
Clarke, L.J., Robinson, S.A., Hua, Q., Ayre, D.J. & Fink, D. 2012. Radiocarbon bomb spike reveals biological effects of Antarctic climate change. Global Change Biology, 18, 10.1111/j.1365-2486.2011.02560.x.Google Scholar
Convey, P. & Peck, L.S. 2019. Antarctic environmental change and biological responses. Science Advances, 5, 10.1126/sciadv.aaz0888.CrossRefGoogle ScholarPubMed
Convey, P., Chown, S.L., Clarke, A., Barnes, D.K.A., Bokhorst, S., Cummings, V., et al. 2014. The spatial structure of Antarctic biodiversity. Ecological Monographs, 84, 10.1890/12-2216.1.CrossRefGoogle Scholar
Cunningham, L. & McMinn, A. 2004. The influence of natural environmental factors on benthic diatom communities from the Windmill Islands, Antarctica. Phycologia, 43, 10.2216/i0031-8884-43-6-744.1.CrossRefGoogle Scholar
Kellogg, T.B. & Kellogg, D.E. 2002. Non-marine and littoral diatoms from Antarctic and subantarctic regions. Distribution and updated taxonomy. Diatom monographs 1. Ruggell: A.R.G. Gantner Verlag K.G., 795 pp.Google Scholar
Kohler, T.J., Kopalová, K., van de Vijver, B. & Kociolek, J.P. 2015. The genus Luticola D.G.Mann (Bacillariophyta) from the McMurdo Sound Region, Antarctica, with the description of four new species. Phytotaxa, 208, 10.11646/phytotaxa.208.2.1.CrossRefGoogle Scholar
Kopalová, K., Ochyra, R., Nedbalová, L. & van de Vijver, B. 2014. Moss-inhabiting diatoms from two contrasting Maritime Antarctic islands. Plant Ecology and Evolution, 147, 10.5091/plecevo.2014.896.CrossRefGoogle Scholar
Lee, J.R., Raymond, B., Bracegirdle, T.J., Chades, I., Fuller, R.A., Shaw, J.D. & Terauds, A. 2017. Climate change drives expansion of Antarctic ice-free habitat. Nature, 547, 10.1038/nature22996.CrossRefGoogle ScholarPubMed
Legendre, P. & Gallagher, E.D. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 10.1007/s004420100716.CrossRefGoogle ScholarPubMed
Lewis Smith, R.I. 1999. Biological and environmental characteristics of three cosmopolitan mosses dominant in continental Antarctica. Journal of Vegetation Science, 10, 10.2307/3237144.CrossRefGoogle Scholar
Melick, D.R., Hovenden, M.J. & Seppelt, R.D. 1994. Phytogeography of bryophyte and lichen vegetation in the Windmill Islands, Wilkes Land, Continent Antarctica. Vegetatio, 111, 10.1007/BF00045578.Google Scholar
Nielsen, U.N. & King, C.K. 2015. Abundance and diversity of soil invertebrates in the Windmill Islands region, East Antarctica. Polar Biology, 38, 10.1007/s00300-015-1703-2.CrossRefGoogle Scholar
Ohtani, S. 1986. Epiphytic algae on mosses in the vicinity of Syowa Station, Antarctica. Memoirs of the National Institute of Polar Research Special Issue, 44, 209219.Google Scholar
Opalinski, K.W. 1972. Flora and fauna in freshwater bodies of the Thala Hills Oasis (Enderby Land, Eastern Antarctica). Polish Archives of Hydrobiology, 19, 383398.Google Scholar
Pinseel, E., Kulichová, J., Scharfen, V., Urbánková, P., van de Vijver, B. & Vyverman, W. 2019. Extensive cryptic diversity in the terrestrial diatom Pinnularia borealis (Bacillariophyceae). Protist, 170, 10.1016/j.protis.2018.10.001.CrossRefGoogle Scholar
Roberts, D., McMinn, A., Johnston, N., Gore, D.B., Melles, M. & Cremer, H. 2001. An analysis of the limnology and sedimentary diatom flora of fourteen lakes and ponds from the Windmill Islands, East Antarctica. Antarctic Science, 13, 10.1017/S0954102001000578.CrossRefGoogle Scholar
Robinson, S.A., King, D.H., Bramley-Alves, J., Waterman, M.J., Ashcroft, M.B., Wasley, J., et al. 2018. Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nature Climate Change, 8, 10.1038/s41558-018-0280-0.CrossRefGoogle Scholar
Sabbe, K., Verleyen, E., Hodgson, D.A., Vanhoutte, K. & Vyverman, W. 2003. Benthic diatom flora of freshwater and saline lakes in the Larsemann Hills and Rauer Islands, East-Antarctica. Antarctic Science, 15, 10.1017/S095410200300124X.CrossRefGoogle Scholar
Sakaeva, A., Sokol, E.R., Kohler, T.J., Stanish, L.F., Spaulding, S.A., Howkins, A., et al. 2016. Evidence for dispersal and habitat controls on pond diatom communities from the McMurdo Sound Region of Antarctica. Polar Biology, 39, 10.1007/s00300-016-1901-6.Google Scholar
Schroeter, B., Green, T.A., Pannewitz, S., Schlensog, M. & Sancho, L.G. 2011. Summer variability, winter dormancy: lichen activity over 3 years at Botany Bay, 77°S latitude, continental Antarctica. Polar Biology, 34, 10.1007/s00300-010-0851-7.CrossRefGoogle Scholar
Souffreau, C., Vanormelingen, P., van de Vijver, B., Isheva, T., Verleyen, E., Sabbe, K. & Vyverman, W. 2013. Molecular evidence for distinct Antarctic lineages in the cosmopolitan terrestrial diatoms Pinnularia borealis and Hantzschia amphioxys. Protist, 164, 10.1016/j.protis.2012.04.001.CrossRefGoogle ScholarPubMed
Spaulding, S.A., van de Vijver, B., Hodgson, D.A., McKnight, D.M., Verleyen, E. & Stanish, L. 2010. Diatoms as indicators of environmental change in Antarctic and subantarctic freshwaters. In Smol, J.P. & Stoermer, E.F., eds. The diatoms: applications for the environmental and earth sciences. Cambridge: Cambridge University Press, 267286.CrossRefGoogle Scholar
Stanish, L.F., Nemergut, D.R. & McKnight, D.M. 2011. Hydrologic processes influence diatom community composition in Dry Valley streams. Journal of the North American Benthological Society, 30, 10.1899/11-008.1.CrossRefGoogle Scholar
Van de Vijver, B., Frenot, Y. & Beyens, L. 2002. Freshwater diatoms from Ile de la Possession (Crozet Archipelago, Subantarctica). Bibliotheca Diatomologica 46. Stuttgart: Schweizerbart Science Publishers, 412 pp.Google Scholar
Van de Vijver, B., Gremmen, N. & Smith, V. 2008. Diatom communities from the sub-Antarctic Prince Edward Islands: diversity and distribution patterns. Polar biology, 31, 10.1007/s00300-008-0418-z.CrossRefGoogle Scholar
Van de Vijver, B., Tavernier, I., Kellogg, T.B., Gibson, J., Verleyen, E., Vyverman, W. & Sabbe, K. 2012. Revision of type materials of Antarctic diatom species (Bacillariophyta) described by West & West (1911), with the description of two new species. Fottea, 12, 10.5507/fot.2012.012.CrossRefGoogle Scholar
Van der Werff, A. 1955. A new method for cleaning and concentrating diatoms and other organisms. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie, 12, 10.1080/03680770.1950.11895297.Google Scholar
Wasley, J., Robinson, S.A., Lovelock, C.E. & Popp, M. 2006a. Climate change manipulations show Antarctic flora is more strongly affected by elevated nutrients than water. Global Change Biology, 12, 10.1111/j.1365-2486.2006.01209.x.CrossRefGoogle Scholar
Wasley, J., Robinson, S.A., Lovelock, C.E. & Popp, M. 2006b. Some like it wet - biological characteristics underpinning tolerance of extreme water stress events in Antarctic bryophytes. Functional Plant Biology, 33, 10.1071/FP05306.CrossRefGoogle Scholar
Wasley, J., Robinson, S.A., Turnbull, J.D., King, D.H., Wanek, W. & Popp, M. 2012. Bryophyte species composition over moisture gradients in the Windmill Islands, East Antarctica: development of a baseline for monitoring climate change impacts, Biodiversity, 13, 10.1080/14888386.2012.712636.CrossRefGoogle Scholar
Zhang, E., Thibaut, L.M., Terauds, A., Wong, S., van Dorst, J., Tanaka, M.M. & Ferrari, B.C. 2019. Extreme niche partitioning promotes a remarkably high diversity of soil microbiomes across eastern Antarctica. bioRxiv, 10.1101/559666.Google Scholar
Zidarova, R., Kopalová, K. & van de Vijver, B. 2016. Diatoms from the Antarctic region: Maritime Antarctica. Iconographia Diatomologica 24. Köningstein: Koeltz Scientific Books, 504 pp.Google Scholar
Supplementary material: File

Bishop et al. supplementary material

Bishop et al. supplementary material

Download Bishop et al. supplementary material(File)
File 53.8 KB